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Abstract

This dissertation addresses the problem of discovering and characterizing un-

known elements in network systems. Klir (1985) provides a general definition of a

system as “... a set of some things and a relation among the things” (p. 4). A

system, where the ‘things’, i.e. nodes, are related through links is a network system

(Klir, 1985). The nodes can represent a range of entities such as machines or people

(Pearl, 2001; Wasserman & Faust, 1994). Likewise, links can represent abstract re-

lationships such as causal influence or more visible ties such as roads (Pearl, 1988,

pp. 50-51; Wasserman & Faust, 1994; Winston, 1994, p. 394).

It is not uncommon to have incomplete knowledge of network systems due to

either passive circumstances, e.g. limited resources to observe a network, active cir-

cumstances, e.g. intentional acts of concealment, or some combination of active and

passive influences (McCormick & Owen, 2000, p. 175; National Research Council,

2005, pp. 7, 11). This research provides statistical and graph theoretic approaches

for such situations, including those in which nodes are causally related (Geiger &

Pearl, 1990, pp. 3, 10; Glymour, Scheines, Spirtes, & Kelly, 1987, pp. 75-86, 178-

183; Murphy, 1998; Verma & Pearl, 1991, pp. 257, 260, 264-265). A related aspect

of this research is accuracy assessment. It is possible an analyst could fail to detect

a network element, or be aware of network elements, but incorrectly conclude the

associated network system structure (Borgatti, Carley, & Krackhardt, 2006). The

possibilities require assessment of the accuracy of the observed and conjectured net-

work systems, and this research provides a means to do so (Cavallo & Klir, 1979, p.

143; Kelly, 1957, p. 968).
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CHARACTERIZING AND DETECTING

UNREVEALED ELEMENTS OF NETWORK SYSTEMS

1. Introduction

1.1 Background

Network representations of real world entities and processes abound. Network

nodes may represent entities with the links describing some type of relationship, e.g.

causal, between the nodes. Information about network membership and structure

can be partial and varied depending on both the network type and the network

observation process. Consequently, the resulting uncertainties may lead to risks

when courses of action are planned and implemented.

Network representations can also be used to model a complex environment

or system each composed of systems. These network systems can be, among other

types, social or computational in nature (Ferrand, Mounier & Degenne, 1999; Klir,

1985). Given the complexity and size of some network systems, it may be difficult to

fully characterize them and understand their workings (National Research Council,

2005, pp. 7, 11). Consider, for example, the covert and dynamic (due in part

to accession and attrition) al-Qa`ida terrorist network. It was not until five years

after 9/11 that `Atiyah, a high-ranking official in the al-Qa`ida terrorist network,

was revealed, at least within the open press (Combating Terrorism Center, 2006;

McCormick & Owen, 2000, pp. 186-187). Information of this type is extremely

valuable in effectively combating terrorism and/or properly modeling related social

networks; hence, an approach to detect such unknown key actors and their ties

would be of great assistance in developing and choosing courses of actions against

such networks.
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1.2 Problem Statement

From a network analysis perspective, the concepts above yield an interesting

problem area: Detecting and characterizing unrevealed elements in network systems,

where some nodes may affect others, and network information may be partial. Such

is the crux of this research.

Researchers from a variety of fields have examined hidden nodes and links in

different contexts. Psychologists have endeavored to determine how individuals infer

hidden causes (Kushnir, Gopnik, Schulz, & Danks, 2003). Individuals in the arti-

ficial intelligence (AI) community have pursued identifying previously unaccounted

mechanisms (e.g. Doyle, 1989). The AI community relies heavily upon Bayesian

networks, and one of the related problems is the presence of hidden, i.e. unobserved,

variables (Binder, Koller, Russell, & Kanazawa 1997). Social network analysts have

also researched the impact of missing links and nodes; additionally, some preliminary

work has been accomplished in statistical modeling of social processes where non-

respondents (i.e. hidden actors) are present (Borgatti et al., 2006; Robins, Pattison

& Woolcock, 2004).

Additionally, there is an area in systems science known as reconstructability

analysis (RA), which refers to the process of examining the possibilities of recon-

structing desirable properties of overall systems using knowledge of respective prop-

erties of their various subsystems (Cavallo & Klir, 1979, p. 143). RA addresses two

problems: identification and reconstruction. The identification problem attempts

to infer an overall, unknown system from its subsystems, while the reconstruction

problem aims at determining subsytems that can adequately reconstruct a known,

higher-level system (Klir, 1985, p. 212). If a system is modeled as a graph G with n

nodes, then one type of subsystem could be a vertex-deleted subgraph of G, which

is a subgraph containing n− 1 nodes (and their incident links) of G (Bondy & Hem-

minger, 1977, p. 227; Kelly, 1957, p. 961). Given this representation, graph theory

contains a form of the identification problem known as the reconstruction conjecture.

2



The conjecture asserts that any two graphs, G1 and G2 (each with n > 2 nodes), hav-

ing the same (unlabeled) vertex-deleted subgraphs are isomorphic, i.e. the graph is

reconstructable (Kelly, 1957, p. 968). Consequently, these concepts are appropriate

for characterizing the relation of nodes in network systems, so the network structure

can be determined. The literature review, in the next chapter, details related efforts

to address hidden and unknown entities.

What emerges from these, and other, research efforts are viable techniques

for addressing portions of the unrevealed elements problem. This research effort

attempts to synthesize previous contributions and create novel detection means in

order to provide a macroscopic approach relevant to network systems, to include

those viewed via an observation process that may capture only partial network in-

formation.

1.3 Contributions

Given the above problem area, the contributions of this dissertation include:

1. A method to identify and detect nodes in a social network where influence

among nodes is not explicitly considered. The network examined contains

nodes connected by only a single link, and there are no links from a node to

itself. Consequently, the network may be represented as a simple graph (West,

2001, p. 2). Furthermore, a static network structure is assumed.

2. A paradigm for incorporating causal, stochastic and temporal aspects within

the context of network reconstruction.

3. A process to identify possible structures of a social influence network and to

detect potential unrevealed individuals. A social influence network will be

represented by a directed graph.

3



1.4 Conclusion

Network systems can be complex and large. Adding to such characteristics

the notions of secrecy and partial observability yields a rather daunting problem for

determining structure and behavior. This research aims at uncovering the structure

of such network systems to provide more insight into the membership and structure

of such systems. This gained knowledge can then aid course of action creation,

selection and risk quantification.

The remainder of this document is as follows: Chapter 2 discusses literature

germane to the problem area, showing the gaps which this effort’s contributions in-

tend to fill; Chapter 3 provides methodological assumptions and descriptions; Chap-

ters 4-6 present results associated with each contribution; and Chapter 7 summarizes

the dissertation and provides areas for future research.

4



2. Review of the Literature

As introduced in Chapter 1, there are many different network types; consequently,

addressing unrevealed elements requires a diversity of methods depending upon the

network under evaluation. Many network types are composed of entities that can

(or appear to) affect each other, i.e. network topology represents correlation among

nodes. Hence incorporation of data analysis techniques, in addition to structural

analysis, may be necessary to reveal network elements. Additionally, given the adage

that correlation is not the same as causation, it is beneficial to examine causality

concepts and how they can be leveraged to address the unrevealed element problem.

This chapter reviews related concepts and previous efforts in these areas.

2.1 Communication and Social Networks

The concepts in this dissertation are germane to many network types, but the

primary application is a social network. A social network consists of actors and their

associated ties. The actors can be individuals or larger social units (e.g. collectives),

and ties are linkages between two actors. Furthermore, the entire set of a specific

kind of tie for the actors in a social network is referred to as a relation (Wasserman

& Faust, 1994, pp. 9, 17-18, 20). Communication networks are essentially a type of

social network with individuals as the actors, and the relation is defined by their set

of communication ties (Rogers & Kincaid, 1981, pp. 94, 346; Wasserman & Faust,

1994, pp. 18, 20). Communication networks often exhibit some form of structure

and, “Cliques are the most important single aspect of communication structure in

a system” (Rogers & Kincaid, 1981, p. 146). Furthermore, a system in a communi-

cation network, “... is a set of interrelated parts coordinated to accomplish a set of

goals” (Rogers & Kincaid, 1981, p. 348). In this social science context, cliques are

subsystems whose individuals communicate with each other more often than with

other individuals in the system. Such cliques are not necessarily the same as the

5



graph theoretic concept of cliques, in which all vertices are connected; rather the

notion of a k−plex may be appropriate, i.e. every member of a subsystem, contain-

ing n members, communicates with at least n − k other members. Consequently,

the traditional graph theoretic clique corresponds to a 1-plex, i.e. k = 1 (Seidman

& Foster, 1978, pp. 142-143). Two roles related to cliques are bridges and liaisons,

who are individuals that connect cliques; however, according to Rogers and Kincaid

(1981), the former are members of one of the cliques they connect, whereas the latter

are not members of either clique (Rogers & Kincaid, 1981, pp. 146, 346-347). Ross

and Harary (1955) discuss the fact (mentioned in other authors’ efforts) that liaisons

can be graphically represented as articulation points, i.e. cut vertices (Harary &

Norman, 1953, p. 27; Ross & Harary, 1955, p. 253; Weiss & Jacobson, 1955, p.

664; West, 2001, pp. 23, 575). Terrorist organizations can be considered a form of

communication or social networks. As indicated by Carley, Dombroski, Tsvetovat,

Reminga, and Kamneva (2003) and Krebs (2002), such networks are cellular and dis-

tributed. The cells can be represented as groups or cliques with liaisons or bridges

linking them together.

In the context of communication networks, heterophily and homophily refer

to the degree of interaction among individuals with different or similar attributes,

respectively (Rogers & Kincaid, 1981, pp. 346-347). Liu and Duff (1972) provided

some empirical evidence that information diffusion through a network requires a de-

gree of heterophily among certain members, stating that “It is through the infrequent,

but strategic, contacts...that such information gains remarkably wide circulation”

(Liu & Duff, 1972, p. 366). Granovetter (1973) also noted that diffusion is depen-

dent upon some amount of weak ties among the communication network members,

with the strength of a tie defined as some combination of its duration, emotional

intensity, intimacy and reciprocal services (Granovetter, 1973, pp. 1361, 1366).

Consequently, Rogers and Kincaid (1981) stated that weak ties involve bridges and

6



liaisons (Rogers & Kincaid, 1981, p. 128). From the literature presented in this and

other sections, revealing bridges is important since they play a key role in networks.

The literature indicates characteristics that one might expect a liaison (and

by assumption, a bridge) to exhibit, i.e in regression terminology, variables that

explain a liaison (Dillon & Goldstein, 1984). One of the first explanatory concepts

examined is the level of credibility of an individual. Hovland, Janis, and Kelly (1953)

asserted that credibility of a communicator depends upon perceived expertness and

trustworthiness (Hovland, Janis, & Kelly, 1953, p. 21). Berlo, Lemert, and Mertz

(1969) performed factor analysis with respect to a similar notion, i.e. “evaluating

message sources” (Berlo, Lemert, & Mertz, 1969, p. 565). Two resulting factors

were safety and qualification; these are somewhat compatible with the concepts of

expertise and trustworthiness (Berlo et al., 1969, p. 574). Rogers and Bhowmik

(1971) build upon these concepts in their statement that a source viewed as having

qualification credibility is often heterophilous with respect to the receivers, while

a source perceived as having safety credibility is frequently highly homophilous to

the receivers (Rogers & Bhowmik, 1971, p. 534). Rogers and Bhowmik (1971)

claim that multiple studies, summarized in Rogers and Shoemaker (1970), support

the logic of their above statement. While it appears intuitive that an individual

between two groups should be perceived as credible, such a concept may not entirely

enable distinguishing a liaison from a nonliaison, as shown in a study by Schwartz

and Jacobson (1977). Thus credibility may be a probable rather than a sufficient

condition for an individual to be a bridge; furthermore, credibility is only one of

multiple explanatory concepts.

The expertness aspect of credibility can be represented by an education level

and experience level components, which are similar to the concepts of knowledge and

experience required by integrators in an organization (Lawrence & Lorsch, 1967, pp.

146-147). Intuitively, a higher education level is associated with greater expertise.

Schwartz and Jacobson (1977) indicated there was no significant difference between

7



liaisons and non-liaisons regarding education level; however, the study was performed

in a university college among faculty and academic administrators with a rank of

instructor or higher. Such a sample appears to create some bias toward the ineffec-

tiveness of a statistic based on education level. An unpublished research report by

McPhee and Meyersohn (1951) indicated that emerging opinion leaders were young

people with some education who were mobile but kept in contact with their families

and illiterate neighbors (as cited in Katz & Lazarsfeld, 1964, pp. 127-128). The

study was conducted in Lebanon among rural peasants who could not read. Despite

the small sample size and the narrow cultural context, it appears plausible that cred-

ibility, as associated with an individual’s influence, e.g. Hovland and Weiss (1951),

may be impacted by education level. Likewise, it is not unreasonable to assume that

the longer an individual has been in an organization performing various tasks, i.e.

the more experience the individual has, the higher the credibility of the individual

(Hovland et al., 1953, pp. 21-22). This correlation may not always hold as discussed

in Lawrence and Lorsch (1967); nevertheless, the association appears plausible in

certain situations.

Determining trustworthiness in social networks can be difficult since the state-

ments and subsequent actions of individuals are not always consistently observable.

Consequently, for some types of research, the explanatory concept of experience may

need to represent both the expertness and trustworthiness of an individual.

As noted above, credibility and influence are related; furthermore, a gatekeeper

position may be considered a bridge position as defined in this research (Conway,

1997, p. 228). Additionally, based on various studies (e.g. Eisenstadt (1952) and

Horsfall and Arensberg (1949)), Katz and Lazarsfeld (1964) noted that a gatekeeper

may exert influence within a group (Katz & Lazarsfeld, 1964, p. 123). While the

accuracy of such a conclusion (based on the studies) may be debatable, this research

assumes that influence related explanatory variables appear plausible for examining
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bridges. The influence related variables examined in this research are oriented toward

leadership and status.

Katz and Lazarsfeld (1964) defined opinion leaders as individuals who trans-

mitted influences of an interpersonal nature in common situations regarding topics

such as fashions or public affairs (Katz & Lazarsfeld, 1964, p. 219). Specifically,

Katz and Lazarsfeld (1964) examined influence among women; however, the derived

results can be generalized. The factors that Katz and Lazarsfeld (1964) examined

were life-cycle, social and economic status, and gregariousness. Life-cycle corre-

sponds to the phase of an individual’s life, with age a component of the factor (Katz

& Lazarsfeld, 1964, p. 221). A liaison might be expected to be older than a non-

liaison, e.g. Eisenstadt (1952); however, at least one study found no significance in

age between the two (Schwartz & Jacobson, 1977, pp. 161, 168). Alternatively, it

might be reasonable to assume that a liaison is usually younger than a non-liaison

(McPhee & Meyersohn (1951) as cited in Katz & Lazarsfeld, 1964, pp. 127-128).

Despite these mixed results, age may be important in a bridge context.

Status can be considered an influence related explanatory variable and can

be decomposed into various aspects to include education (e.g. Katz & Lazarsfeld,

1964, p. 226). Rank can be viewed as a measure of status; MacDonald (1976) found

that, on average, liaisons were higher in grade than the non-liaisons with whom

they had contact (MacDonald, 1976, p. 372). Lasswell and Kaplan (1950) stated,

“power is a type of influence” (p. 84); furthermore, they assert group leaders hold

power (Lasswell & Kaplan, 1950, p. 152). Consequently, leadership (and arguably

supervision) is another aspect of influence, and it is natural to assume that bridges

could be leaders and supervisors (Eisenstadt, 1952; Horsfall & Arensberg, 1949, pp.

24-25; MacDonald, 1976, p. 372).

Katz and Lazarsfeld (1964) examined the impact of gregariousness, i.e. the

number of contacts an individual has, as it related to opinion leadership, and found

some evidence that as gregariousness increased so did opinion leadership (Katz &
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Lazarsfeld, 1964, pp. 223, 243, 259, 288). Their research motivates consideration

of gregariousness when characterizing bridges. Gregariousness is an attribute that,

when expressed in terms of a social network, can be approximated by the degree of

a node, i.e. the number of (undirected) links for an actor. In order to compare node

degree across groups of different sizes, the degree deg(vi) of a node vi in a group

containing n nodes is determined by the following index deg(vi)
(n−1)

(Proctor & Loomis,

1951, pp. 570-571; Wasserman & Faust, 1994, pp. 178-179).

Since bridges can be viewed as gatekeepers, another influence related explana-

tory variable is the amount to which a network node depends upon another node, i.e.

a gatekeeper, in order to communicate with other network nodes (Freeman, 1980, p.

587). Freeman (1980) developed a measure to capture this pair-dependency; further-

more, both betweenness and closeness centrality measures can be derived from the

pair-dependency measure. This research focuses on identifying unrevealed bridges

where their links to other groups is unknown; however, it is plausible to assume non-

liaison nodes might depend upon the liaison node for intra-group communication as

well as inter-group communication. A standardized version of the betweenness index

of Freeman (1977) is appropriate in such situations. Specifically, for a group of n

nodes, with gik representing the number of shortest paths between vi and vk, and

gik(vj) denoting the number of shortest paths between vi and vk that contain vj, the

index is
∑n

k=1

gik(vj)

gik
(n−1)(n−2)

2

, i 6= j 6= k and i < k. (Freeman, 1977, pp. 37-38; Wasserman &

Faust, 1994, p. 190).

It is also plausible to consider an explanatory variable representing the similar-

ity of a group member to every other group member with respect to a combination

of the previously given explanatory variables. Such a variable is in keeping with the

previously discussed concepts of homophily and heterophily (Rogers & Bhowmik,

1971).

While there exists literature devoted to identifying liaisons and their attributes

and functionality, the existence of liaisons is somewhat presupposed (MacDonald,
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1976; Ross & Harary, 1955; Schwartz & Jacobson, 1977). For example, MacDonald

(1976) and Schwartz and Jacobson (1977) used a matrix manipulation method re-

ported in Weiss and Jacobson (1955) to identify network groups. Once the groups

were identified, the individuals who connected them could be ascertained. These

connection individuals were then compared, on the basis of various attributes, to

individuals in the network who were not liaisons. In some instances, there emerge

concepts that appear to be applicable not only to social networks, but also other net-

work types, regarding the distinction of liaisons. The concepts include location, level

of interaction, transferability (i.e. heterogeneity), status (due perhaps to nomination

or certification) and character (e.g. gregariousness) (Freeman, 1980; Granovetter,

1973; Katz & Lazarsfeld, 1955, pp. 115, 118, 127, 220-228; Lewin, 1952, pp. 461-

462; Liu & Duff, 1972; MacDonald, 1976, pp. 370-372; Rogers & Kincaid, 1981, pp.

30, 128, 146, 346-347; Schwartz & Jacobson, 1977, pp. 166, 169). An example of a

liaison in a non-social network of networks is a router that links computer networks

that are not similar (Englander, 2003).

The relevant literature does not appear to directly address the following prob-

lem: Given a network of groups, for which the information about each group consists

of the individuals composing the group, attributes of the individuals, and (only)

intra-group relations; identify which individual, possibly more than one, is a bridge.

Additionally, for the same given information, the literature does not seem to contain

the approach of this effort to detect that a bridge is missing from a group, i.e. infer

the existence of an unknown bridge from group data that does not contain the bridge

in its membership, the bridge’s attributes, nor the bridge’s contacts.

2.1.1 Influence in Networks

Another aspect to communication networks is the notion of influence. As noted

by Liu and Duff, there are two parts to determining the effectiveness of communi-

cation: how far and quickly information diffuses, and the extent to which attitudes
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and behavior are changed (Liu & Duff, 1972, p. 365). Rogers and Bhowmik (1971)

proposed that effective communication is maximized when there is the proper mix

of heterophily and homophily for relevant variables between the source and receiver.

Furthermore, they posit that status inconsistent individuals may be apt at fulfilling

the liaison role in a social structure, e.g. such actors may be suited to link het-

erophilous cliques (Lenski, 1954; Rogers & Bhowmik, 1971, pp. 532-533). Rogers

and Kincaid (1981) summarize, based on previous works (e.g. Granovetter (1973),

Liu & Duff (1972) and Epstein (1961)) that strong links, i.e. within homophilous

groups, are apt for influence; while, weak links, i.e. between heterophilous individ-

uals/groups, permit new information (innovation) diffusion. However, Rogers and

Kincaid (1981) noted that the strength of weak ties does not hold for every cul-

ture; therefore, any proposed behavioral science theories need to be validated across

cultural boundaries (Rogers & Kincaid, 1981, pp. 243-247).

Merton (1957) derived the following notion for interpersonal influence from

concepts of power presented by Goldhamer and Shils (1939).

Interpersonal influence refers to the direct interaction of persons in so
far as this affects the future behavior or attitude of participants (such that
this differs from what it would have been in the absence of interaction)
(Merton, 1957, p. 415).

Concerning the relationship between causality and influence, Merton (1957)

notes the analysis of influence by March (1955) who, in turn, draws from concepts

by Simon (1952, 1953). March (1955) argues that an influence relation set is a proper

subset of a causal relation set, and both sets involve asymmetrical relations and an

ordering of the relations. Simon highlights the notion of asymmetry between the

influencer and influencee, when he implements the definition of ‘influence process’

given by Lasswell and Kaplan (1950) (Lasswell & Kaplan, 1950, pp. 71; March,

1955, pp. 436-437; Merton, 1957, pp. 415-416; Simon, 1952, pp. 517, 520; Simon,

1953, pp. 503-504). Furthermore, there are similarities between influence diagrams

and causal networks, e.g. both are represented by directed acyclic graphs (DAGs),
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contain chance nodes and deal with conditional independencies (Geiger & Pearl,

1990, p. 3; Pearl, Geiger, & Verma, 1990, pp. 67-68). Consequently, in certain social

network contexts, it appears reasonable to address influence via causal concepts and

techniques (addressed in another section of this chapter).

Social influence in networks has been examined for many years. French (1956)

examined the impact of the structure of a group’s interpersonal relations (modeled

as a digraph) on the group’s process of influence. From this theory and the work of

others, Marsden and Friedkin (1994) denoted the influence model as yt+1 = Wyt;

where yt represents the attitudes of individuals at time t and W corresponds to

coefficients of influence (Marsden & Friedkin, 1994, p. 10). Friedkin (1990) referred

to the generalized version, y = αWy + βXb + u, as the network model (Friedkin,

1990, p. 317). Friedkin (1990) noted that the model was provided in earlier literature,

and Marsden and Friedkin (1994) comment on the model’s appeal since it addresses

influence from both endogenous, i.e. network effects, and exogenous perspectives via,

the first and second term, respectively, of the right hand side of the equation. Path

analysis and structural equation models (discussed in another section of this chapter)

have also been used to address causality and social influence, e.g. Duncan, Haller and

Portes (1968). Despite the discussion of causal principles in social network analysis

(e.g. Doreian, 2001; Haller and Butterworth, 1960), the literature does not appear to

contain the application of a causal analysis method to derive social influence network

structures, at the interpersonal level, or detect hidden individuals in such networks.

2.2 Incomplete Information in Networks

Information about a social network’s topology may be incomplete (e.g. hidden

links or nodes) or contain uncertainties (e.g. does an extant link really exist, or a

link exists but between which two nodes) (Butts, 2003; Robins et al., 2004). Social

network topological uncertainty can arise as a result of intentional and unintentional

actions. An intentional action may be a consequence of a group’s desire for secrecy,
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e.g. a terrorist network (McCormick & Owen, 2000). Alternatively, two individuals

completing a survey may have different perceptions regarding network relationships

(Banks & Carley, 1994; Killworth & Bernard, 1976; Krackhardt, 1987). The topic

has been canvassed reasonably well in the social sciences literature, and the following

review provides a few examples.

In the context of unintentional actions, Banks and Carley (1994), “...define[d]

a probability measure for network-valued random variables” (p. 121). Consequently,

when provided with a random sample of networks with some distribution (contain-

ing unknown parameters), one can obtain a maximum likelihood estimate of the

‘commonly perceived’ network, perform goodness-of-fit tests, test hypotheses and

develop confidence regions (Banks & Carley, 1994, pp. 121-123, 128-131, 135-137).

Interesting hypotheses may involve concepts such as subnetworks and uniqueness of

the commonly perceived network (Banks & Carley, 1994, pp. 132-133).

In response to the situation where network data is incomplete, techniques have

been developed to ‘fill in the gaps’. Social networks often have incomplete data in

the form of missing links. If the links between nodes have a strength attribute, then

Burt (1987) commented that, “The implication is that the missing network data can

be replaced with quantitative data indicating a weak relation” (p. 63). Butts (2003)

has gone a step further by addressing not only missing links, but also extant links

that are incorrect; all of which are caused by inaccurate informant reports (Butts,

2003, p. 110). Thus, his approach is concerned with determining the true underlying

network, as was the approach of Banks & Carley (1994). The method Butts (2003)

employed is relevant to situations involving uncertainties, e.g. intelligence regarding

networks (Butts, 2003, p. 105).

In addition (or prior) to correcting an incomplete or inaccurate network topol-

ogy, it would be useful to know the associated impact. Robins et al. (2004) developed

models to assess the impact of missing data in determining various substructures of

the network under investigation (Robins et al., 2004, pp. 257, 272-275, 277-278).
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The missing data includes nodes, i.e. non-respondents, and associated links (Robins

et al., 2004, pp. 264, 266, 277-278). The issue of which nodes to include in a network

analysis is also discussed (Robins et al., 2004, pp. 258-260). This issue is known as

the boundary specification problem, which addresses inclusion of known individuals

and their ties, rather than detection of unknown elements (Laumann, Marsden &

Prensky, 1983). Consequently, Robins et al. (2004) do not address detecting missing

nodes; however, they mention two situations where links could be added. The first

is attributed to Stork and Richards (1992) and adds (i.e. reconstructs) a directed

link from one node to another if the opposite direction link exists between the nodes

(Stork & Richards, 1992, pp. 197-200). Second, if two nodes are connected to the

same (non-responding) node, then adding a link between the two original nodes may

be plausible (Robins et al., 2004, pp. 260, 263).

Costenbader and Valente (2003) examined the stability of various centrality

measures when the underlying social network data from which samples are obtained

contain missing elements, e.g. non-respondents. Kossinets (2006) and Borgatti et al.

(2006) performed missing data analysis that included not only edges, but also nodes

and gave results that, for certain conditions, showed significant impact on estimates

of network level statistics. Kossinets (2006) examined the impact of missing nodes

on the following network statistics:

mean vertex degree...; clustering...; assortativity...; fractional size of
the largest connected component...; and average path length (mean geodesic
distance) between all pairs of vertices in the largest component... (p. 254)

Borgatti et al. (2006) examined the impact of missing and additional data on

centrality measures: degree, betweenness, closeness and eigenvector. The authors

point out that centrality measures are robust when the data error is small, but

context determines the acceptable level of robustness (Borgatti et al., 2006, pp. 129,

134-135). This statement underscores the importance of this research effort, because
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a single undetected network node or edge (i.e. node or edge addition error) can have

a critical impact on the ability to predict and manage associated risks.

Steinley and Wasserman (2006) examined the plausibility of identifying hidden

links and nodes by assuming a generative model as appropriate for the application

at hand, e.g. Bernoulli for a terrorist network, and then determining if network sam-

ples have statistics congruent with the conjectured distribution. The authors note

that disagreement could indicate an incorrect generative model, or missing nodes

and links, that if added, would yield network statistics in line with the generative

model (Steinley & Wasserman, 2006, pp. 9-10). This dissertation follows in the

vein of Steinley and Wasserman (2006); specifically, an approach that can address

the presence of unknown nodes (and their incident links). The importance of such

a technique is validated by the above research highlighting the impact of missing

network elements.

2.3 Data Analysis

There are statistical analysis techniques able to address, in some form or fash-

ion, issues germane to networks with unrevealed elements. Dillon & Goldstein (1984)

noted that multivariate analysis includes a broad range of techniques designed to help

analyze “simultaneous relationships among variables” (p. 2). The techniques can be

decomposed into dependence and interdependence methods. Dependence methods

involve explicating or predicting measures predicated on a set of predictor variables.

Alternatively, interdependence methods are less predictive and attempt to show in-

sights regarding the underlying structure of the data via simplification (e.g. data

reduction). Dependence methods include: multiple regression, discriminant analysis

and logistic regression. Interdependence methods include factor analysis, principal

component analysis, multidimensional scaling and cluster analysis (Dillon & Gold-

stein, 1984, pp. 19-20).
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2.3.1 Interdependence Methods

2.3.1.1 Factor Analysis

Factor analysis focuses on identifying structure from a set of observed variables. It

includes a variety of techniques and in the broadest sense even principal component

analysis can be considered a type of factor analysis. Broadly speaking, factor analysis

provides three primary functions:

1. Reducing the number of variables while maintaining the largest possible amount

of the original information, i.e. accounting for most of the variability.

2. Searching for distinct qualitative and quantitative characteristics in large amounts

of data.

3. Testing hypotheses about such distinctions.

(Dillon & Goldstein, 1984, pp. 20, 23-24, 53, 56-57). It is important to note that

factors are qualitative and thus cannot be observed (Dillon & Goldstein, 1984, pp.

53-54, 57, 60; Long, 1983, p. 11).

Principal component analysis attempts to determine the factor dimension of

the data with respect to the total variance. The usual goal is to use the fewest

possible principal components to account for the majority of the total variation.

The components are linear combinations of the original variables. Additionally, the

extracted components are orthogonal; consequently, they are uncorrelated, and this

facilitates their use in other techniques such as regression (Dillon & Goldstein, 1984,

pp. 8, 24-25, 27).

Factor analysis, by design, is aimed at uncovering unobservable (i.e. latent)

variables by examining observed variable covariation. However, there are two per-

spectives from which to view the process of discovering unobservable variables. The

first perspective is to consider the unobservable factors as a perfect function of ob-

servable variables (i.e. no measurement error), as in principal components analysis.
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The second viewpoint is treating the observable indicators, each having an error

term, as a function of the latent variable(s), which is the case in common factor

analysis. The difference in perspectives is subtle, but important. Factor analysis can

also be decomposed into both exploratory and confirmatory uses. Exploratory factor

analysis is accomplished when an analyst is searching for an underlying structure to

the data without an a priori theoretical hypothesis. Confirmatory factor analysis

is conducted when an analyst has prior theoretical information on the underlying

structure, and desires to validate or negate the hypothesized structure. The under-

lying structure is characterized by factor equations (Dillon & Goldstein, 1984, pp.

24, 53, 57-59; Long, 1983, pp. 11-15, 20).

Rogers and Kincaid examined social communication networks and used factor

analysis to identify cliques. The observable indicators were the network links between

individuals in one case and correlations from the communication matrix in a second

case, and the factors were the cliques (Rogers & Kincaid, 1981, pp. 185-186, 188,

195).

2.3.1.2 MultiDimensional Scaling

Multidimensional Scaling (MDS) is a data reduction technique designed to take a

data set, uncover its hidden structure, and represent the result pictorially. MDS is a

mathematical tool for mapping objects in multidimensional space so the objects’ rel-

ative positions in the space indicate their proximity, in a metric or nonmetric sense.

Hence given a data set of distances (representing object similarities), MDS tech-

niques reverse engineer the data to determine a graphical structure of the objects’

relationships. Such a problem can become rather difficult when the data contains

error, i.e. noise (Dillon & Goldstein, 1984, pp. 107-108, 125). Ji and Zha (2004) de-

veloped an algorithm, that incorporated MDS, for determining the physical positions

of nodes in a wireless adhoc sensor network (Ji & Zha, 2004).
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2.3.1.3 Cluster Analysis

Techniques designed to separate a data set into groups fall under the heading of

cluster analysis. Additionally, the goal of cluster analysis is to find groups that

exhibit small intra-group variation compared to the inter-group variation. Cluster

analysis procedures examine data and discover groups based on datum similarity.

Discriminant analysis, which is a dependence method, starts with the assumption

that certain groups exist and attempts to classify data into groups (Dillon and Gold-

stein, 1984, pp. 157-158, 360). Consequently, discriminant analysis is looking for

ways to distinguish between these groups, i.e. what makes them dissimilar. Clus-

ter analysis techniques have been used to reconstruct relationships (i.e. trees) from

species-related data (Vingron, Stoye, & Luz, 2002).

2.3.2 Dependence Methods

2.3.2.1 Multiple Regression Analysis

Multiple regression analysis deals with estimating and/or predicting a dependent

variable’s mean value on the basis of known (or fixed) values of (possibly) multiple

explanatory/predictor variables. The (population) bivariate regression model pos-

tulates that E(Y |Xi) = β0 + β1Xi, where Y is the dependent variable and Xi is

an independent, predictor variable. However, it is reasonable to assume there ex-

ists some error between Y = Yi and E(Y |Xi); consequently, the regression model

Yi = E(Y |Xi) + εi. The error term εi represents (intentionally or unintentionally)

excluded variables that nevertheless affect the dependent variable (Dillon & Gold-

stein, 1984, pp. 209-211). Consequently, hidden variables can be accounted for in

the error term of the model; therefore, a large error term (variance) can indicate a

hidden variable. The hidden variable (and proposed interactions with known vari-

ables) could be included to determine if the detailed model is more plausible (Myers

& Montgomery, 2002, pp. 3-4; Robins, personal communication, April 2006).
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The general multiple regression model with p − 1 independent variables, X2,

X3,. . ., Xp is expressed as Yi = β1 + β2X2i + β3X3i + . . . + βpXpi + εi, i = 1, . . . , n

where β1 represents the intercept, and β2, . . . , βp denote the partial regression slope

coefficients, and the residual term for the ith observation is labeled εi. Note that

the independence assumption (i.e. orthogonality) nullifies any possible interaction

between the explanatory variables (Dillon & Goldstein, 1984, pp. 209, 214-214).

2.3.2.2 Logistic Regression

Logistic regression is a model for analyzing the relationship of a dichotomous (or

polytomous) dependent variable, D, with multiple independent variables, Xi, i ∈ Z+.

If there exist n independent variables, then the logistic model for a dichotomous

dependent variable is

P (D = 1|X1, X2, . . . , Xn) =
1

1 + e−(α+
∑

βiXi)

where the α and βi terms are parameters from the initial regression equation (Klein-

baum & Klein, 2002, pp. 5, 8, 268). Logistic regression has been used to identify

network elements, e.g. Goldenberg, Kubica, and Komarek (2003), and an overview

of such applications is provided in another section of this chapter.

2.4 Link Analysis

According to Harper and Harris (1975), “Link analysis methods were devel-

oped to systematically establish the relationships that exist among individuals and

organizations from bits and pieces of available evidence” (p. 158). To some ex-

tent, link analysis can be viewed as inducing or learning network structures such as

Bayesian networks (e.g. Cooper & Herskovits, 1992; Jensen, 2001, p. 36; Murphy,

1998). Nevertheless, there is a distinction between link analysis and other meth-

ods for constructing networks such as Bayesian networks. The latter methods find
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and characterize associations based on the overall statistical features of a sample of

realizations gathered from some population. Link analysis, however, starts with net-

work representable data and tries to gain insight from the network links and nodes

(Association for the Advancement of Artificial Intelligence, 1998). The following

paragraphs outline various efforts related, in some measure, to link analysis and this

dissertation.

Kleinberg (1999) used link structure from the World Wide Web (WWW), in-

stead of web page content, to analyze the set of pages germane to a broad search

topic, and detect related ‘authoritative’ pages. He developed the concepts of author-

ities and hubs, and used linear algebra to identify the authoritative pages. Gibson,

Kleinberg, and Raghavan (1998) employed Kleinberg’s technique to infer web com-

munities, resulting in a sense of ordered structure at a macro level of the WWW.

Flake, Lawrence and Giles (2000) defined web communities graph-theoretically, and

employed a maximum flow - minimum cut paradigm to identify the communities.

Cai, Shao, He, Yan, and Han (2005) stated that entities are often related to each

other in different ways depending upon the relation of interest, and implemented

both regression and an algorithm based on the minimum cut concept to identify

hidden communities in such a multiple network context (Cai et al., 2005, pp. 58,

60-61). Gruhl, Guha, Liben-Nowell, and Thompkins (2004) developed an algorithm

to infer a social network, containing directed arcs representing influence, from topic

transmission in blogspace. Their propagation model is based on a stochastic cellular

automata model employed by Goldenberg, Libai, and Muller (2001), who studied

communications via word-of-mouth. Stochastic cellular automata models simulate

higher level, i.e. system, effects from lower level entity interactions (e.g. Goldenberg

et al., 2001, pp. 213, 215; Gruhl et al., 2004, pp. 491-493, 497-498; Liben-Nowell,

2005, pp. 90, 97-98; Ulam, 1952, p. 274; Von Neumann, 1966, pp. 91-92, 111, 133,

135). Kempe, Kleinberg and Tardos (2003) discussed the propagation model used

by Goldenberg et al. (2001), when Kempe et al. (2003) examined the problem of
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maximizing influence propagation in social networks (note: this problem was pre-

sented in Domingos and Richardson (2001)); however, their effort was not focused

on identifying the influence structure (or missing elements).

Cohn and Hofman (2001) developed a probabilistic model that incorporated

both content and connectivity (i.e. link) details, and could be used to predict con-

nectivity from content, e.g. link structure from content. Their domain was a col-

lection of documents, but the concepts could be applied to social networks (Cohn

and Hofman, 2001, p. 433). Kubica, Moore, Schneider, and Yang (2002) developed

a method employing demographic information for determining group membership,

and subsequent link data sampling with noise to identify group members that inter-

act (Kubica et al., 2002, pp. 798, 800). In order to more quickly identify groups,

Kubica, Moore, and Schneider (2003a) developed a follow-on heuristic, similar to a

k -means approach, to find groups based only on the link data. Experimental results

were favorable, in that the heuristic found comparable solutions to the full method in

a much shorter period of time. Additionally, Kubica, Moore, and Schneider (2003b)

addressed the problem of learning a graph-based model from noisy, observed link

data, that includes multiple link types and temporal information indicating the ob-

servation time. Additionally, the authors used their modeling approach, on real

world data sets, to predict an entity’s future links, even to entities with which there

had been no former relations (Kubica et al., 2003b, pp. 392, 399). Komarek (2004)

experimented with logistic regression to determine if an object of interest is part

of a given link (i.e. a relation of objects). Komarek’s variants of logistic regres-

sion performed relatively well against other algorithms for the given task (Komarek,

2004, pp. 32, 94, 106). There have also been some accomplishments in detecting

hidden groups (for a fixed number of actors) in social communication networks, with

dynamic links, using Hidden Markov Models and random graph concepts (Baumes,

Goldberg, Magdon-Ismail, and Wallace, 2004; Magdon-Ismail, Goldberg, Wallace,

and Siebecker, 2003).
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The above efforts primarily focus on discerning networks or groups; whereas, a

significant portion of the research in this dissertation assumes defined groups, and at-

tempts to determine unknown elements within the groups. The following paragraphs

provide an overview of link prediction, and the relation to this dissertation.

According to Popescul and Ungar (2003), link prediction can include the fol-

lowing scenario: Given a set of nodes, some of the links between nodes, and possibly

some node attributes; predict links that have not been observed. Consequently, they

applied structural logistic regression for link prediction in the context of relational

data (Popescul & Ungar, 2003, p. 92). Taskar, Wong, Abbeel, and Koller (2004)

also performed link prediction in relational data scenarios (e.g. social networks), but

they implemented the relational Markov network framework of Taskar, Abbeel, and

Koller (2002). The relational Markov network extends a traditional Markov network

by addressing relational data domains, and was employed by Taskar et al. (2002) to

aid in entity classification, from a set of labels, in a relational data context (Taskar

et al., 2002, p. 485; Taskar et al., 2004, p. 660). The modeling approaches of both

Taskar et al. (2002) and Taskar et al. (2004) are based on the approach and con-

cepts of Lafferty, McCallum, and Pereira (2001). Taskar et al. (2004) incorporated

both attributes and link structure information (e.g. transitivity patterns), resulting

in improvements in accuracy over flat classification, which attempts to predict links

using only attribute information (Taskar et al., 2004, pp. 659, 661). In a simi-

lar effort, Taskar, Abbeel, Wong, and Koller (2003) combined the approaches and

concepts of Taskar et al. (2002) and Taskar et al. (2004) to address the problem

of predicting labels (i.e. classifications) and links in relational data. Furthermore,

Getoor, Friedman, Koller, and Taskar (2002) performed experiments that showed

incorporating link structure in a model can provide better predictions of attributes

(Getoor et al., 2002, pp. 679, 700). For this dissertation, the training and testing

procedures for identification and detection of group entities were, to some extent,

derived from the concepts in Popescul and Ungar (2003) and Taskar et al. (2003).

23



Taskar et al. (2003) also discussed introducing hidden variables. While this disser-

tation contains concepts seen in the literature, the approaches for revealing nodes

are somewhat different from, or not fully synthesized and implemented in, previous

efforts. Additionally, the context and focus of this research are, to some extent, not

identical to those encountered in the literature.

Goldenberg et al. (2003) examined an interesting facet of link analysis known

as link completion, which they defined as determining the (most probable) missing

entity or entities within a set of related entities, i.e. a link. The authors specifically

examined various algorithms for the link completion case where only one member

is missing. Collaborative filtering is defined as the use of a repository of other

users’ preferences, i.e votes, to predict items a new user might find appealing/useful

(Breese, Heckerman, & Kadie, 1998, pp. 1-2; Resnick, Iacovou, Suchak, Bergstrom,

& Riedl, 1994, p. 175). Consequently, Goldenberg et al. (2003) noted the similarity

of their examined case to the collaborative filtering protocol Allbut1, where a single

vote of a user is randomly withheld, and then an attempt is made to predict the

value of the vote based on the remaining votes of the user (Breese et al., 1998, pp.

9-10; Goldenberg et al., 2003, p. 2). The research presented in this dissertation

contains differences from and a similarity to the problem of link completion. In

one case of this dissertation research, link information for the missing node is not

given. In fact, it is not assumed there exists a missing group node. The focus is on

determining if there exists a missing node, not on selecting a candidate missing node

from a set of nodes. Nevertheless, link completion is somewhat similar in objective

to the reconstruction conjecture of Ulam (1960), discussed in another section of this

chapter.

Hammer (1979/1980) examined the effects of distance, interaction level, and

common connections between individuals on the formation, persistence and disso-

lution of links between individuals at two points in time. The general trend ob-

served was that distance (measured by traversing individuals rather than physical
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lengths) is inversely related to the probability of a direct link, while intensity and

common connections are directly proportional to the presence of a direct link (Ham-

mer, 1979/1980). Liben-Nowell and Kleinberg (2004) examined the link prediction

problem as it relates to social networks. The authors evaluate multiple measures,

based only on network topological properties observed in a specified time interval,

for their effectiveness in predicting links that will arise in a subsequent time inter-

val. While certain measures outperform a random predictor, none of the measures

achieve higher than a 16% accuracy (Liben-Nowell & Kleinberg, 2004, pp. 1, 18).

Al Hasan, Chaoji, Salem, and Zaki (2006) combined features based on entity prox-

imity, aggregate entity attributes and network topology to implement within several

classification algorithms for link prediction in a co-authorship context. Additionally,

the authors compared the performance of the features in addressing the task of link

prediction, and shortest distance showed promise among the topological features (Al

Hasan et al., 2006, pp. 1, 3-5, 8-9). Adafre and Rijke (2005) attempted to identify

missing links in Wikipedia web pages. The basis of their algorithm was that similar

web pages (identified by content clustering) should have similar link structure, i.e. in

effect structural equivalence (Adafre & Rijke, 2005, pp. 90, 92, 94). While both this

dissertation and the efforts reviewed in this paragraph address network elements, the

former can address nodes, while the latter focuses on links.

Cooke (2006) makes a distinction between link prediction and link detection;

the former is concerned with identifying new links in successive time steps (per

Liben-Nowell and Kleinberg (2004)), while the latter deals with detecting missing

links in the current time step. To simulate a hidden link in the detection task, Cooke

(2006) removed links of connected dyads. He then examined the effectiveness of

various metrics in detecting/distinguishing hidden links versus links that were either

forming (i.e. predicted) or links that were truly non-existent. Hidden and forming

links could not be distinguished (at the author’s prescribed level of confidence) using

traditional topological metrics; however, for simple networks, different link types
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were identifiable when various metric types (e.g. temporal) developed by Cooke

(2006) were employed (Cooke, 2006, pp. 60, 63, 68, 108, 110-111). Hoff and Ward

(2006) implemented a latent factor model to analyze link detection and prediction,

and multi-way analysis of link data. The detection and prediction results were

promising compared to a random modeling approach (Hoff & Ward, 2006, pp. 3-4,

7-12). While there is similarity in the node detection approach of this dissertation

to the link detection technique in Cooke (2006), the fundamental difference is the

type of network element, i.e. a node vice a link.

2.5 Causality

The previous data analysis methods involve correlations and covariations among

variables. However, such relationships do not necessarily imply causality. Yet causal-

ity is important to understand since certain networks and systems, especially those

that are rigorously designed and engineered, are by nature causal (National Research

Council, 2005, pp. 7, 11-12). This section reviews methods that attempt to identify

causal relationships among variables; furthermore, examples of literature pertinent

to ascertaining hidden causes are provided.

2.5.1 Structural Models

Structural models are representations of theories or theoretical models, where

the term theories refers to sets of causal hypotheses that attempt to explicate phe-

nomena occurrence (Singh, 1975; James, Mulaik, & Brett, 1982, pp. 27, 31, 68,

104-105). A structural model is represented as a simple, directed graph (cf. Figure

1). In such a graph, the nodes represent causes, effects or error terms. Causes that

are hypothesized and hence not to be explained are referred to as exogenous vari-

ables, while effects (to be explained by the model) are labeled endogenous variables.

Note that it is possible for an effect to, in turn, cause another effect; however, in such

a case, both the original effect and the succeeding effect are considered endogenous
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variables. The error terms can represent ‘disturbances’ on the endogenous variables

such as omitted causes, and random/non-random measurement errors. Straight arcs

representing a causal relationship may originate from any of the three node types,

but terminate only at endogenous variables. Furthermore, each straight arrow has a

structural parameter associated with it, indicating the strength of the causal relation-

ship. Double-headed curved arcs occur between the exogenous variables, i.e. causes,

indicating the existence of a relationship (not to be explained by the model) between

such variables. Figure 1 illustrates a structural model with exogenous variables X1

and X2, and endogenous variables, Y1 and Y2. The B terms represent structural

parameters and the d terms denote disturbances. Another aspect of variables is

whether they are associated with directly observable and consequently measurable

events, in which case they are referred to as manifest variables, or associated with

events not directly observable and so not directly measurable, i.e. latent variables.

If a variable is latent, it is indirectly measured via associated manifest variables (cf.

factor analysis) (James et al., 1982, pp. 31-33, 55).

1X

2X

1   Y 2Y

1 1y xB

1 2y xB

1y
d

2 1y yB
2yd

Figure 1 Illustrative Structural Model; adapted from James et al. (1982)
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Mathematically, a structural model can be represented by a set of functional

equations, with the effect as the dependent variable, and causes and an error term as

the independent variables. Often, the functional relation is deemed a linear combi-

nation of the causes and the error terms, and the causes have parameters indicating

causal strength. Such a model is referred to as a linear causal model. Consider

the situation where a variable, i.e. cause, is unmeasured (because it is not deemed

as part of the hypothetical causal structure) but is actually relevant to the causal

structure. The result of such a situation is that the effect’s error term will include

the unmeasured cause, and be related to at least one of the measured causes, i.e.

exogenous variables. Consequently, there will exist covariation between the effect’s

error term and relevant measured cause(s) of the effect; however, James et al. (1982)

argued that estimating or solving for such covariation is not possible since distur-

bance terms, by definition, cannot be directly measured (James et al., 1982, pp.

22-23, 33, 44-47, 62-65).

A path model is a structural model with manifest variables in standardized

form, and the structural parameters are denoted as path coefficients. Additionally,

the associated functional equations and confirmatory analysis are referred to as path

equations and path analysis, respectively (James et al., 1982, pp. 68-69).

Latent variable (structural) models are generalized forms of linear causal mod-

els in which some of the variables are unobserved. A measurement model is a model in

which manifest variables (effects) serve as indicators of the latent variables (causes),

and the causal relations between the two variable types are specified. Note that

measurement models may include disturbance terms (James et al., 1982, pp. 104,

106-107). Silva, Scheines, Glymour and Spirtes (2006) defined a pure measurement

model as, “a measurement model in which each observed variable has only one latent

parent, and no observed parent” (p. 198). With respect to such models, Silva et al.

(2006) developed methods for, “discovering which latent variables exist, and which
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observed variables measure them...[and]...discovering the Markov equivalence class

that contains the causal graph connecting the latent variables” (p. 193).

2.5.2 Latent Class Analysis and Models

A latent class model is a subset of latent structure models, which are related

to factor analysis and structural equation models; however, a latent class model as-

sumes the manifest variables are categorical (vice continuous) and indicate latent

variables that are also categorical, i.e. composed of various classes. The objective of

latent class analysis is to characterize the latent variable that explicates the associ-

ation observed between manifest variables (Dillon & Goldstein, 1984, pp. 490-493;

Lazarsfeld & Henry, 1968, pp. 11, 17, 21, 46).

Hierarchical latent class models are Bayesian networks whose structures are

rooted trees with observable leaves, but the remaining nodes are latent. Zhang

(2004) developed an algorithm for learning hierarchical latent class models, building

the structure up from the original latent class model, in part, by introducing a new

hidden variable as a parent of two observable variables that violate the assumption

of local independence (i.e. observable variables are mutually independent given the

original hidden variable) (Goodman, 1974, p. 1179; Zhang, 2004).

2.5.3 Bayesian Networks and Causal Inference

Markov networks are undirected graphs where symmetrical probabilistic depen-

dencies are represented by links. Bayesian networks are DAGs with nodes and links

representing random variables and direct causal influences (measured via conditional

probabilities), respectively (Pearl, 1988, pp. 50-51, 77, 90-91, 96). Furthermore, a

dependency model is a rule that determines if the assertion, “Given C, A and B are

independent”, i.e. I(A,C,B)M , is true. A probability distribution is an example of a

dependency model, since one can determine the independence of two variables given

a third variable via conditional independence upon the third variable. In attempt-
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ing to graphically represent (via an undirected graph) a dependency model, a few

more definitions are necessary. A dependency map (D-map) is an undirected graph

representing the dependency model such that any independence in the model, i.e.

I(A,C,B)M , implies that the subset of graph vertices corresponding to C, intercept

all paths between the graph vertices in the subsets A and B. An independency map

(I-map) embodies the converse implication, and a perfect map incorporates both

implications. Given these definitions, it is possible to define a Markov network of

the dependency models as a minimal I-map, i.e. deletion of any associated graph

edge would make the graph no longer an I-map (Pearl, 1988, pp. 83, 91-92, 96).

In determining the dependency graph from empirical data, one can also incorporate

outside information to reduce the computations that must be performed (Shipley,

2002, pp. 253-254, 258-259). Such outside information for a social (i.e. influence)

or engineered network could be organizational construct constraints or the laws of

physics, respectively (National Research Council, 2005, pp. 7, 12).

Cooper and Herskovits (1992) derived a Bayesian method for inducing prob-

abilistic networks, specifically Bayesian belief networks, from data. Their method

addressed the comparison of probabilities for different (sub)network topologies (both

directed and undirected). Consequently, one can derive the probability of an arc’s

existence; furthermore, in the context of causal models, information regarding the

likelihood of a causal relationship can be derived (Cooper & Herskovits, 1992, pp.

309, 312, 318-320). This latter feature is beneficial when attempting to address

causality using small sample sizes (Cooper & Herskovits, 1992, p. 318; Pearl, 2001,

p. 64). A limitation of the author’s method is its set of assumptions, e.g. a priori

knowledge of the (temporal) ordering of variables (Cooper & Herskovits, 1992, p.

320; Korb & Nicholson, 2004, p. 200). The effort of Cooper and Herskovits (1992)

is a natural predecessor to the work of Butts (2003) involving a Bayesian approach

to recreate the criterion graph based on informant reports (Butts, 2003, pp. 105-

106). Cooper and Herskovits’ research also addresses determining the most probable
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network structure. They provide an exact method (using some assumptions) and a

heuristic. Additionally, they identified open problems related to efficiently searching

and calculating probabilities, to include situations with hidden variables (Cooper &

Herskovits, 1992, pp. 318, 320-321, 323, 326, 335-336).

Dynamic Bayesian Networks (DBNs) are formed by taking a series of Bayesian

networks over time. Typically, the Bayesian network structure, at each time slice,

remains the same. Furthermore, the arcs connecting Bayesian networks at different

time slices (i.e. inter time-slice arcs from a node in one Bayesian net to another)

are only between networks in adjacent time slices, thus the Markovian property

is preserved. Evidence introduced about a set of nodes in a particular time slice,

can be used to update distributions in other nodes, to include those in future time

slices. (Boyen, Friedman, & Koller, 1999, pp. 97-98; Dean & Kanazawa, 1989,

p. 148; Friedman, Murphy, & Russell, 1998; Kjærulff, 1995, pp. 91-92; Korb &

Nicholson, 2004, pp. 105-106; Murphy & Mian, 1999). Dean and Kanazawa (1989)

argue that such models permit thinking about planning applications and computing

associated probabilities in a manner more direct than equivalent Markov models

(Dean & Kanazawa, 1989, p. 148). As indicated by Murphy and Mian (1999),

various authors have addressed hidden variables for DBNs in a number of ways.

The following efforts highlight the methods used to detect the presence of

hidden, i.e. latent, variables. Pearl (1986) showed that if a tree-structured repre-

sentation of a Bayesian network exists, then it is possible to uniquely uncover the

topology of the tree (to include its hidden variables, i.e. internal tree nodes) by

observing pairwise dependencies among the observable variables, i.e. the tree leaves

(Pearl, 1986, pp. 241, 273-274, 277). Similarly, Zhang, Nielsen and Jensen (2004)

developed an algorithm to learn network tree structures that incorporated hidden

variables indicated by the violation of mutual independence between feature, i.e. ob-

servable, variables given a class variable (Zhang et al., 2004, pp. 283-284, 288-289).
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Cooper and Herskovits (1992) developed methods to address missing variable

values and hidden variables (i.e. no data available); however, their methods are not

efficient for practical usage. This occurs since the authors’ formulation for computing

the probability of a network structure has an exponential complexity with respect

to the missing values. Another result provided by the authors is the expectation of

a conditional probability over all possible network structures for a set of variables,

permitting inference by averaging multiple belief networks’ inferences. A possible

extrapolation of this technique is the derivation of a system of systems inference

from multiple subsystem network structure inferences (Cooper & Herskovits, 1992,

pp. 309, 323-328).

Connolly (1993) also developed a method for detecting and inserting hidden

nodes in the construction of Bayesian network trees. His method involved measuring

the dependence of observable variables (e.g. X and Y ) using the mutual information

formula:
∑

i

∑
j

P (Xi, Yj) log
P (Xi, Yj)

P (Xi)P (Yj)

and then clustering highly dependent variables (Connolly, 1993, p. 66).

Martin and VanLehn (1994) developed Bayesian network topologies, with hid-

den variables, having a factor structure. The authors detected hidden variables (i.e.

factors) and introduced such variables into the topology by finding cliques of de-

pendent (based on Pearson’s χ2 association test) observable variables (Martin &

VanLehn, 1994, pp. 2-4). Elidan, Lotner, Friedman and Koller (2000) looked for

structural signatures, i.e. semi-cliques, in order to identify and introduce hidden

variables (Elidan, Lotner, Friedman, & Koller, 2000, pp. 479-480). The semi-cliques

addressed by Elidan et al. (2000) are similar to communication network cliques

discussed in Rogers and Kincaid (1981). Elidan et al. (2000) introduced hidden

variables within the semi-clique; whereas for communication networks the hidden

variables could be either intra-clique in the case of bridges, or between cliques in the
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case of liaisons (Elidan et al., 2000, p. 482; Rogers & Kincaid, 1981, pp. 346-347).

Friedman (1997) developed a method, based on the Expectation-Maximization al-

gorithm of Dempster, Laird and Rubin (1977), to learn the structure of Bayesian

networks, given incomplete data. Friedman (1997) defined incomplete data as either

hidden variables or missing variable values (Friedman, 1997, p. 125).

A significant milestone in the analysis of causal models was reached when

Geiger and Pearl (1990) provided a theorem that allowed for a translation between

DAGs and probability distributions. Before elaborating on the consequence of their

theorem, it is necessary to discuss the notion of d-separation. d-separation is a

criterion for determining if a variable or a set of variables in a causal model are

independent of another variable or set of variables. When the model contains only

undirected links (hence no longer a causal model, i.e. a Markov network), then d-

separation is equivalent to identifying vertex cut-sets (Geiger & Pearl, 1990, pp. 3,

10; Pearl, 1988, pp. 88, 93-94, 116-117; Pearl & Paz, 1987; Shipley, 2002, pp. 23,

29). Pearl (1988) formally defines d-separation as follows:

If X, Y and Z are three disjoint subsets of nodes in a DAG D, then Z
is said to d-separate X from Y, denoted <X|Z|Y>D, if there is no path
between a node in X and a node in Y along which the following two
conditions hold: (1) every node with converging arrows is in Z or has a
descendant in Z and (2) every other node is outside Z. (Pearl, 1988, p.
117)

According to Pearl (1988), a DAG D is an I-map of a dependency model M

if <A|C|B>D =⇒ I(A,C,B)M , where the subscripts D and M refer to the DAG

and dependency model, respectively. Furthermore, D is called a Bayesian network if

and only if D is a minimal I-map of a probability distribution P (that is on a set of

variables) (Pearl, 1988, p. 119). Therefore, the essence of Geiger and Pearl’s theorem

is that for any DAG, there exists a probability distribution that incorporates all the

independencies shown in the causal model. Consequently, if one observes statistical

independencies in the observation data that are not portrayed in the hypothesized
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causal model (i.e. DAG), then the model is incorrect. Note: The independencies in

the causal model are identified via the notion of d-separation (Geiger & Pearl, 1990,

pp. 3, 10; Pearl 1988, pp. 116-117, 119, 122; Shipley 2002, pp. 36-37; Verma &

Pearl, 1990, p. 71).

Pearl and Verma (1991) developed an algorithm for inferring causal models

from observations (even with the presence of some unobservable variables and with-

out temporal information). Their algorithm searches for conditional independencies

between a pair of variables, assumes a causal theory probability distribution is avail-

able, and attempts to derive the causal model’s topology from the distribution’s

features; however, Pearl and Verma (1991) argued that a large sample is a sufficient

proxy for the true distribution. Their algorithm was designed to distinguish between

genuine causes and spurious covariations, i.e. variables with a hidden common cause.

Additionally, Pearl and Verma (1991) noted that their modeling construction task

was an identification game. This is similar in thought to the identification problem

of reconstructability analysis (discussed in another section) mentioned by Cavallo

(1980), and Cavallo and Klir (1981) (Cavallo, 1980, pp. 647-648; Cavallo & Klir,

1981, p. 2). The original algorithm was given in Verma and Pearl (1991), who

discussed how (topologically) different causal models can be statistically equivalent;

consequently, an equivalence class of models can result which the authors succinctly

represent by a graphical representation known as a pattern (either rudimentary or

completed). Verma and Pearl (1991) also addressed the notion of an embedded

causal model (i.e. a model in which not every variable is observable) and associated

patterns, represented by graphs containing both singly directed and bi-directional

links. Subsequently, they provide a boundary, given a number of observable vari-

ables, on the number of distinct embedded causal models (Verma & Pearl, 1991, pp.

255-256, 259-261, 263).

Glymour et al. (1987) provided a heuristic for introducing latent variables

into a causal model. The heuristic is predicated on searching a (sample) correlation
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matrix for satisfaction of tetrad constraints (i.e. differences of correlation products

equivalent to zero). Partial correlation constraints are also implemented in the au-

thors’ approach and aid in determining placement of the latent variable(s) (Glymour

et al., 1987, pp. 75-86, 178-183). In a follow-on article, Glymour and Spirtes (1988)

illustrated that it was possible to derive more than one causal structure, satisfying

the constraints, from the empirical data; furthermore, their method was limited to

models with linear causal relations. Glymour and Spirtes (1988) also addressed the

issue of model specification for time-series models, but the question of latent variables

for such models was open at the time the article was written. Spirtes, Glymour, and

Scheines (1990) tied together their previous results and Pearl’s (1988) d-separation

principle; consequently, a sufficient condition for the presence of latent variables in

causal models was provided (Spirtes, Glymour, & Scheines, 1990).

Spirtes, Glymour, and Scheines (1993, 2000) provided an algorithm for inferring

a causal graph even in the presence of latent common causes. The algorithm, causal

inference (CI), took a covariance matrix or cell counts as input, and output a special

type of partially oriented graph known as a partially oriented inducing path graph.

Hence, the exact causal structure may not be known (e.g. arrow directions), but at

least the number of possible structures is (somewhat) reduced (Spirtes, Glymour, &

Scheines, 1993, pp. 180-183; Spirtes, Glymour, & Scheines, 2000). Unfortunately,

the CI algorithm is not computationally feasible when there are many variables;

therefore, Spirtes et al. (1993, 2000) developed a fast causal inference (FCI) algo-

rithm that also outputs a partially oriented graph (Glymour, Scheines, Spirtes, &

Ramsey, 2004a; Richardson, 1996; Spirtes et al., 2000). This algorithm is feasible

for large numbers of variables if the true causal structure is sparse and there are

only a few bi-directional edges chained together. Furthermore, Spirtes et al. (1993,

2000) noted that their FCI algorithm can, in certain cases, provide more orientation

information than Verma and Pearl’s IC algorithm. Note: both the CI and FCI al-

gorithms implement d-separation (Spirtes et al., 1993, pp. 171, 182, 188-189, 200;
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Spirtes et al., 2000, pp. 129-130, 139-140, 144-145, 155). The FCI algorithm assumes

the Causal Markov and Faithfulness conditions hold (Spirtes et al., 2000, p. 124).

The causal Markov condition is satisfied by a causal graph with vertex set V and a

probability distribution (generated by the causal structure represented by the graph)

if and only if every vertex in the graph is independent of V \ (Descendants(W )

∪ Parents(W )) given Parents(W ), where W is any vertex in the graph (Spirtes

et al., 2000, p. 29). The Faithfulness condition is satisfied by a causal graph and

a probability distribution (generated by the graph) if and only if every relation of

conditional independence that is true in the probability distribution is implied by

applying the Causal Markov condition to the graph (Spirtes et al., 2000, p. 31).

Lemmer (1996) presents an alternative perspective to account for correlation

between variables. He argues that causes generate signals to which effect-events

observe and respond. Thus a latent cause should be introduced between the original

cause and the effects, such that the states of the latent variable are the cross product

of the signal states issued by the original cause. Lemmer (1996) shows that such a

representation is more efficient, with respect to storage, than a common approach

to latent variable introduction, where the variable is added at the same level as the

original cause (Lemmer, 1996, pp. 7, 13-14).

Regardless of the implementation, causal exploratory analysis is concerned

with generating candidate causal structures (Dillon & Goldstein, 1984; Shipley, 2000;

Spirtes et al., 2000). The next section reviews literature concerned with a slightly

different problem; specifically, determining the true structure of a network’s graph

representation from partial information of the structure. This reconstruction process

can be applied to causal or non-causal networks.
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2.6 Network Reconstruction

Reconstructing a structure from its components is important in a variety of

fields, e.g. link analysis in police intelligence (Harper & Harris, 1975). The fol-

lowing sections provide an overview of various methods that can address network

reconstruction.

2.6.1 Reconstructability Analysis

Cavallo and Klir (1979) use the term reconstructability analysis (RA) to refer

to the process of examining the possibilities of reconstructing desirable properties of

overall systems using knowledge of respective properties of their various subsystems

(Cavallo & Klir, 1979, p. 143). Systems in RA can have causal (thus directed)

relations (Klir, 1985, pp. 151-153; Zwick, 2004, p. 889). In their discussion of

discovering causal structures, Spirtes et al. (2000) noted the reconstruction effort of

Klir and Parviz (1986). Additionally, latent variable modeling can be implemented

within the reconstruction problem context; however, Zwick (2004, 2007) notes that

this capability does not appear to have been developed or applied in RA (Zwick,

2004, pp. 878, 883, 889; Zwick, personal communication, May 2007).

RA is composed of two problems, reconstruction and identification. The recon-

struction problem attempts to determine the set of subsystems that can adequately

reconstruct (in terms of behavior or properties) the known overall system. The iden-

tification problem addresses ascertaining what information can be gained about an

overall (unknown) system, or set of systems known as the reconstructability family,

from its subsystems (Cavallo, 1980, p. 648; Cavallo & Klir, 1981, p. 2; Klir, 1985, pp.

151-153, 212, 227-228). The identification problem is also concerned with choosing

a single system from the reconstruction family as the hypothesized overall system.

This subproblem can be addressed by establishing some goodness criteria and then

performing optimization to determine the best system candidate(s). Since the true
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system is unknown, it is not possible to measure the difference between members of

the reconstruction family and the true system; however, one can identify an unbi-

ased reconstruction as an estimate of the true system. The unbiased reconstruction

is the solution (i.e. system) that is based on all of the information in the subsystems,

but no more than that information. According to Klir (1985), the unbiased recon-

struction is a unique solution (for probabilistic systems) to the optimization problem

known in the literature as the principle of maximum entropy (Cavallo, 1980, p. 648;

Klir, 1985, pp. 222, 228). Consequently, the unbiased reconstruction system can be

considered an initial solution that can possibly be augmented as related, substan-

tive knowledge becomes available. Alternatively, one may choose a reconstruction

to minimize risk (Klir, 1985, pp. 222-223).

2.6.2 Graph Reconstruction

In graph theory, a vertex-deleted subgraph of an undirected graph G is a sub-

graph with a single vertex (and its adjacent edges) deleted from G (Bondy, 1991, p.

221). There are n(G) vertex-deleted subgraphs of G, where n(G) is the number of

vertices in G (West, 2001, p. 38). The (unlabeled) vertex-deleted subgraphs of G are

referred to as cards, and the deck is considered the entire family of such subgraphs.

A graph H, containing the same deck as G, is called a reconstruction of G. Fur-

thermore, if every reconstruction of G is isomorphic to G, then G is reconstructible.

The Reconstruction Conjecture states that all finite, simple (unlabeled) graphs with

at least three vertices are reconstructible, i.e. G is unique up to an isomorphism

(Bondy, 1991, p. 221-223; Harary & Manvel, 1970; Kelly, 1957, p. 968). Kelly

(1957) proved an equivalent theorem for trees, and then verified the conjecture for

simple graphs up to order seven (Kelly, 1957; Myrvold, 1990, pp. 150). Additionally,

Ulam (1960) conjectured the problem using set notation (Bondy & Heminger, 1977,

p. 249; Ulam, 1960). There are similar definitions for digraphs; however, in general

such graphs are not reconstructible (Bondy, 1991, pp. 221, 223; Stockmeyer, 1977,
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1981). Using edge-analogous concepts, Harary (1964) developed what is referred to

as the Edge Reconstruction Conjecture; specifically, every finite simple graph with

at least four edges is edge reconstructible. Additionally, Harary (1964) proposed

the problem of reconstructing a graph from its non-isomorphic subgraphs. This is

referred to as the set reconstruction conjecture (Bondy, 1991, p. 221; Harary, 1964,

pp. 51-52; Lauri, 2004, p. 86).

The reconstruction number of a graph is the minimum number of vertex-deleted

subgraphs of G necessary to identify the unique graph G (Harary & Plantholt, 1985;

Myrvold, 1990). Harary (1964) posed the problem of determining the minimum

number of vertex-deleted subgraphs necessary to reconstruct a graph, and Harary

and Manvel (1970) showed that a graph with at most two unlabeled vertices (where

the labels are distinct) is reconstructible from three of its vertex-deleted subgraphs

(Harary, 1964, p. 51; Harary & Manvel, 1970, pp. 136, 143). Additionally, Harary

and Manvel (1970) analyzed bounds for various graphs and noted that not every

graph requires all of its vertex-deleted subgraphs to reconstruct the original graph

(Harary & Manvel, 1970, pp. 133-136). Harary and Plantholt (1985) conjectured

that almost all (unlabeled) graphs could be reconstructed with three vertex-deleted

subgraphs (Harary & Plantholt, 1985, p. 454). Bollobás (1990) proved the conjec-

ture from a probabilistic perspective using random graphs (Bollobás, 1990; Bondy,

1991, p. 222). Consequently, if one has multiple vertex-deleted subgraphs, perhaps

representing longitudinal observations of a graph with a single vertex and its incident

edges removed (e.g. a network with a single, hidden node), it may be possible to

reconstruct the unique, original graph.

Myrvold (1988, 1990) has researched reconstruction with respect to ally and

adversary numbers, where the terms ally reconstruction number and reconstruction

number are synonymous. The concept is based on an ally providing subgraphs to

an individual in an ordering to minimize the number required to reconstruct the

original graph. Alternatively, the adversary reconstruction number is the number of
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subgraphs necessary in order to determine the original graph when an adversary is

providing the ordering of subgraphs received (Myrvold (1992) noted that the adver-

sary reconstruction number concept was mentioned in Harary and Manvel (1970)).

Myrvold (1990) proved that the reconstruction number of a tree with five or more

vertices is three (Myrvold, 1988; Myrvold, 1990, p 150).

While reconstruction has received significant attention, the literature does not

appear to address the topic with respect to either repeat observations of the sub-

graphs nor causal applications/constraints. Incorporating these concepts into recon-

struction is a contribution which this dissertation addresses.

2.7 Conclusion

This chapter has provided an overview of work related to this research. The

primary areas of relevant literature include both analytic (to include graph-theoretic)

methods and network models that can address incomplete data, as well as causal

information. While the literature is replete with such information, there is room for

synthesis and expansion of current problem formulations and solutions with respect

to characterizing and detecting unrevealed elements in network systems. The next

chapter contains the methodology that will be employed to address some of the

related gaps.
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3. Methodology

3.1 Introduction

The crux of this dissertation is the development and demonstration of methods

to characterize and detect unrevealed elements in network systems. The associated

manifestations are three-fold:

1. A method to identify (and consequently characterize) and detect individuals

that bridge groups in social networks. In network terms, these individuals are

referred to as connection nodes. The method is demonstrated on empirical and

generated data.

2. A method to reconstruct network structures given repeat observations of var-

ious parts of the network structure. The method is exhibited on a few small

sized graphs. Additionally, an approach to address the reconstruction of causal/influence

networks is provided.

3. A method to determine possible social influence network (SIN) structures and

hidden individuals using causality analysis. An application of the method using

empirical data is demonstrated.

The networks are assumed to be representable by simple graphs (i.e. no loops),

which may be directed or undirected depending on the context and the problem

being addressed.

The following sections provide relevant concepts from the literature, approaches

and assumptions for the contributions provided in Chapter 1.

3.2 Revealing Bridges in Social Networks

In this research, a bridge (member) is an element that connects two or more

groups, and is an element of only one of the groups (Rogers & Kincaid, 1981, p.
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29). If there is only one bridge member per group, the bridges can be graphically

represented as articulation points, similar to the graphical representation of liaisons

(Harary & Norman, 1953, p. 27; Ross & Harary, 1955, pp. 253, Weiss & Jacobson,

1955, p. 664). Liaisons are network elements linked to individuals in at least two

groups other than their own group; furthermore, the liaison’s group might consist

only of the liaison (Weiss & Jacobson, 1955, pp. 664, 666). Hence a bridge is a type

of liaison, and for this research it is assumed bridge members and liaisons are similar

in attributes since both connect groups.

For this dissertation, revealing bridges is composed of two activities: identifi-

cation and detection. Identification is classifying/labeling group members as either

a bridge or non-bridge. Detection is inferring the existence of an unknown bridge

from group data that does not contain the bridge in its membership, the bridge’s

attributes, or the bridge’s links.

Given the potential distinguishing characteristics of liaisons mentioned in the

literature review, the assumption that inter-group communication is necessary in

order for a system to effectively function, and a situation where the groups are com-

posed of highly homophilous elements, then it is reasonable to expect the existence

of bridges that are somewhat heterophilous with respect to the known group entities

(Ferrand et al., 1999, pp. 204-205; Granovetter, 1973; Lenski, 1954, pp. 405-406;

Liu & Duff, 1972; Rogers & Bhowmik, 1971, pp. 532-533; Rogers & Kincaid, 1981,

pp. 128-129). Based on this idea of distinction, as well as, concepts and/or logistic

regression and discriminant analysis assumptions and features given in Clark (2005),

Dillon and Goldstein (1984), Hosmer and Lemeshow (2000), Kleinbaum and Klein

(2002), Lachenbruch, Sneeringer and Revo (1973), Montgomery, Peck and Vining

(2001), Neter, Kutner, Nachtsheim and Wasserman (1996), Pohar, Blas and Turk

(2004), logistic regression was the method chosen in this research for identification.

The dependent variable is dichotomous, and represents whether an individual is or

is not a bridge. The covariates involve both human factor and structural compo-
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nents, consistent with theories and findings in the relevant literature. Consequently,

identification permits characterization of the member according to the covariates in

the regression model. It should be noted that the structural attributes are intra-

group; otherwise, the identification of a bridge might be evident by inspection, e.g.

a member with an inter-group link is a bridge. The identification method is validated

using empirical and generated group data, partitioned into estimation and prediction

components, with all member labels, e.g. bridge/non-bridge, in the prediction data

removed. A logistic regression model, fit to the estimation data, is applied to the

prediction data, and the classification results examined (Montgomery et al., 2001).

The data sets, and associated attributes and groups are described in the chapter

demonstrating the presented methods.

The detection method is a logical extension of the identification method and

the assumption that the group under analysis communicates with at least one other

group in the network. Specifically, if the regression model does not identify a bridge

in a group, then the existence of an unknown bridge member or members may be

implied given the underlying assumption. Alternatively, it is possible the model

may misclassify members, and such cases are examined, to some extent, in this

research. Validation of the detection method is accomplished in a manner similar to

the identification method. There is one additional step; specifically, the appropriate

bridge (and its incident links) in the prediction data is removed prior to applying

the logistic regression model that was fit to the estimation data.

Once a bridge node is detected, there exists the issue of placement within the

group, i.e. to whom it is connected. A heuristic approach is to assign the average

(or mode) of the non-bridges demographic values to the detected bridge, and then

connect the detected bridge to any node with which the similarity of demographic

attributes is 0.5 or greater. An optimization technique is to maximize the proba-

bility that the inferred individual equals a bridge subject to parametric/structural
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constraints. Both approaches are demonstrated and results provided in a subsequent

chapter.

This section has provided an overview of the methods to reveal bridges in

social networks. Yet as previously noted, there exist non-social network bridges that

have analogous characteristics to social network bridges. Consequently, the above

methods should apply to a non-social network.

3.3 Network Reconstruction

Network reconstruction refers to the following problem: Given a n node net-

work (with unknown structure) represented by a graph, Gu, how many observations

are required to reconstruct, if possible, Gu, and what is the accuracy of the recon-

struction as observations are made under the following constraint: there are only

enough resources to observe n−1 nodes with their associated links in a single obser-

vation (Kelly, 1957, p. 968). This problem definition was derived from the field of

graph reconstruction. The Reconstruction Conjecture asserts that all finite, simple

(unlabeled) graphs with at least three vertices are reconstructible, i.e. G is unique

up to isomorphism (Bondy, 1991, pp. 221-223; Harary & Manvel, 1970; Kelly, 1957,

p. 968). Traditional graph reconstruction operates under the assumption that the

vertex-deleted subgraphs are provided, i.e. observed, in some order without rep-

etition; while there may exist isomorphic vertex-deleted subgraphs, each of the n

vertex-deleted subgraphs are observed once and only once. Furthermore, the focus

of reconstruction has been the reconstructability of graphs; rather than reconstruc-

tion accuracy. Nevertheless, as demonstrated in this dissertation, concepts of ally

and adversary reconstruction numbers can be employed to address accuracy and

temporal aspects in an alternative reconstruction framework (Bondy, 1991; Harary,

1964; Harary & Plantholt, 1985; Lauri, 1987, 1992; Myrvold, 1988, 1990).
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Bondy (1991) (based on personal communication with Stockmeyer in 1976)

noted that observations of vertex-deleted subgraphs of a reconstructible graph, Gu,

can imply more than one Gu, if all vertex-deleted subgraphs are not observed (Bondy,

1991, p. 222). For example, in the context of traditional reconstruction, consider

Gu, Gt0 and Gt1 as shown in Figure 2. Gt0 and Gt1 represent two different vertex-

deleted subgraphs of Gu observed at time t0 and t1, respectively. While Gt0 and Gt1

appear identical in structure, they are ‘different’ because two different vertices were

deleted from Gu to produce Gt0 and Gt1 . From these vertex-deleted subgraphs, two

representations of Gu are G1 (which is equivalent to Gu) and G2, as displayed in

Figure 3. Results for this problem area are provided in another chapter, but it is

clear that ambiguity in traditional network reconstruction can arise.

0tG
1t

GuG

Figure 2 Undirected Graph with First Two Time Steps

This dissertation extends network (i.e. graph) reconstruction by developing

and demonstrating a framework in which reconstruction is attempted and analyzed

with repeat observations of the vertex-deleted subgraphs permitted; conceptually de-

rived, in part, from random graph (and associated evolutionary) concepts of Bollobás

(2001), and Erdős and Rényi (1960), as well as, (ally and adversary) reconstruction
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2G1G

Figure 3 Possible Reconstructed Networks

number concepts of Harary (1964), Hararay and Plantholt (1985), Myrvold (1988,

1990) (Bollobás, 2001, p. 42; Erdős & Rényi, 1960, p. 20). Consequently, the level

of ambiguity/difficulty associated with reconstruction (with or without observing all

vertex-deleted subgraphs) can increase since repeat observations of the vertex-deleted

subgraphs are permitted. The extension is approached as follows:

1. Framework definitions and notation are developed.

2. A general formula for reconstruction accuracy is given.

3. The framework is demonstrated on a simple, undirected graph with unlabeled

vertices, and related assertions are provided.

Another paradigm considered in this dissertation is the incorporation of causal

exploratory analysis within network reconstruction. In this case, the underlying

network represents a causal/influence network, which is represented as a DAG. The

approach for this situation is similar to the previous reconstruction approach.
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3.4 Determining SIN Structures and Hidden Individuals

In this dissertation, a social influence network (SIN) is defined as a network

of individuals who may exert influence on one another. Based on concepts in the

literature, it is assumed a SIN can be represented by a causal network; consequently,

a SIN will be portrayed as a directed acyclic graph (DAG). In certain situations,

it may be appropriate to assume the SIN nodes act in concert for some purpose;

therefore, the SIN could be portrayed as a connected DAG. While the focus in this

section is on social influence networks, the methods presented can be applied to a

variety of other networks that operate on the principle of a node causing effects on

or influencing another node or nodes (National Research Council, 2005, pp. 7, 11-12;

Pearl, 1988, 2000).

Given the assumption that a SIN can be represented by a causal network,

the method implemented to determine possible SIN structures is causal exploratory

analysis. Such analysis requires identifying a measurement of causality/influence

so that probabilistic independencies between the nodes can be calculated (Geiger

& Pearl, 1990, pp. 3, 10; Pearl, 1988, pp. 81-86, 89 91-94, 116-119, 122; Shipley,

2002, pp. 8, 9, 36-37, 90-94; Spirtes et al., 2000, pp. 43-44, 82, 139; Verma &

Pearl, 1990, pp. 71; Verma & Pearl, 1991, pp. 256, 264). Independency calculations

between nodes of causal models representing some network types (e.g. engineered

networks) are, generally, not too difficult because such networks have nodes that can

naturally be represented in an event/state form that is measurable. Pearl (2001)

gives an example of a Bayesian network containing a node representing the states

(on and off) of a sprinkler (National Research Council, 2005, pp. 11-12; Pearl,

1988, pp. 18-19, 50-51; Pearl, 2001, pp. 12, 15, 23). However, in social networks,

more scrutiny is required. March (1955) provides an excellent example of this when

discussing interpersonal influence between two individuals, A and B. He states there

is a difference “... between the influence relationship of two events (e.g. ‘A votes yes,’

‘B votes yes’) and the relationship between two individuals (e.g. A, B).” (March,
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1955, p. 435) Consequently, in measuring influence networks where the nodes are

individuals, March (1955) infers (and references one of his previous works, March,

1953-54, pp. 469-470),

... that the appropriate model for the description of an influence
relationship between two individuals is one in which the influence-related
activities of the individuals are partitioned into mutually-exclusive sets
such that within each set asymmetry holds between the individual agents
of the activities ... (p. 436)

Consequently, exploratory analysis using a single category of events, which

March (1953-54, 1955) defines as subsets of an individual’s activities, can lead to

an inadequate representation of the true SIN (March, 1953-54, pp. 469-470; March,

1955, p. 436). Nevertheless, as a foundational step, this research examines a single

event category, i.e. a single relation, in exploratory analysis (Wasserman & Faust,

1994). The following steps comprise the method for identifying possible SIN struc-

tures, of which one or more may be selected according to theoretical or constraint

criteria, and analyzed further (Klir, 1985; Shipley, 2002, p. 290; Spirtes et al., 2000,

pp. 124-125).

1. Identification of a set of individuals.

2. Identify event categories (potential categories could be derived from the hier-

archies of Lenski (1954) and topical areas of March (1953-54)).

For this step, an important consideration is the ability to readily measure

events pertaining to influence among network members. For example, consider

a clandestine network that has some voting process, where observation of the

process and results is unlikely. Consequently, event proxies will generally have

to be used, leading to some inaccuracies. An example of an event proxy re-

garding influence can be the number of meetings jointly attended, i.e. data

pertaining to social closeness. (Renfro, 2001, pp. 2, 97; Watts, 2003)
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3. Perform exploratory analysis using event category data. The results can be

interpreted as candidate SIN structures.

If desired, confirmatory analysis could also be accomplished by comparing a

proposed ‘ground truth’ SIN to the exploratory analysis results (Shipley, 2002,

pp. 102-103). Results from exploratory analysis may include networks with

some edges not fully oriented, indicating observationally equivalent models

(Glymour & Spirtes, 1988; Shipley, 2002, pp. 256-260, 265, 287-290; Spirtes

et al., 1993, pp. 180-183; Spirtes et al., 2000, pp. 6, 59, 61, 82-87, 139-140;

Verma & Pearl, 1991). In such a case, the confirmation process should account

for such discrepancies.

It is arguably difficult to obtain a ground truth SIN, but it could be assumed

that certain networks are reasonable proxies for ‘true’ social influence networks (Kill-

worth & Bernard, 1976). For example, it may be plausible that the formal (com-

mand) hierarchy of an organization could serve as ground truth, against which net-

work structures obtained via exploratory analysis could be validated. It is likely that

such a proxy may not be entirely accurate, but for the most part it should prove ade-

quate (Weiss & Jacobson, 1955, p. 662). This fact is seen in a study by Jacobson and

Seashore (1951) involving an organization, where most individuals perceived those in

a direct line of authority over them as power figures; yet, there did exist individuals

who exhibited less or more power than expected given their formal position (Jacob-

son & Seashore, 1951, pp. 38-39). Since influence and power have been treated as

synonyms, albeit in a political context, the formal organizational hierarchy could be

assumed to adequately represent the ground truth social influence network (Simon,

1953, p. 501).

Results from exploratory analysis may contain a bi-directed arc between two

variables, indicating the presence of a hidden variable (Shipley, 2002, pp. 256, 266-

267; Spirtes et al., 2000, pp. 125, 144-145; Glymour et al., 2004a; Verma & Pearl,

1991). In the single relation SIN previously discussed, such a variable indicates a
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hidden individual in that event category. This is due to the assumption (based on

the reasoning provided by March) that the association between events corresponds

to influence between individuals in that particular activity (March, 1953-54, pp.

469-470; March, 1955, pp. 435-436). Consequently, revealing a hidden individual

in a SIN is accomplished by simply performing exploratory analysis, and examining

the results for appropriate indicators. In order to validate this approach, the event

category data for an individual in the SIN will be removed, subsequent exploratory

analysis conducted, and the output examined for appropriate hidden variable indi-

cators (Shipley, 2002, pp. 266-267; Spirtes et al., 2000, pp. 144-145; Glymour et

al., 2004a). This section has provided an overview of a method to determine SIN

structures and hidden individuals within a SIN.

3.5 Conclusion

This chapter presented the approaches for the development and demonstration

of three methods to address unrevealed elements in networks. The next chapter

provides results of the first method.
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4. Revealing Bridges in Social Networks

4.1 Introduction

This chapter provides results demonstrating the method for revealing bridge

elements in social networks. The feasibility is demonstrated on both empirical and

generated data sets (Jackson, Boggs, Nash & Powell, 1991).

4.2 Method

As indicated in the literature, liaisons (and by assumption bridges) may exhibit

distinctive characteristics. The features can serve as potential demographic and

structural covariates for a logistic regression model employed to provide insight into

revealing bridges. The model could be established so that the response variable, y,

equals 1 if the member is a bridge and 0 otherwise; furthermore,

E(y) = π = P (y = 1) =
exp(x′β)

1 + exp(x′β)

where x and β would represent the covariate values and parameters, respectively

(Hosmer & Lemeshow, 2000; Kleinbaum & Klein, 2002; Montgomery et al., 2001).

Two standard approaches (cf. Hosmer and Lemeshow (2000), and Montgomery

et al. (2001)) were employed to examine the bridge identification. Both approaches

were implemented for the empirical data set, and one approach was employed for the

generated data. The first approach involved fitting a logistic regression model (using

characteristics discussed in the literature review) to the entire data set, and then

examining the ability of the fitted model to identify, i.e. classify, each individual

observation in the data set. This goodness of fit test constituted a bridge identifi-

cation process. The goodness of fit test was performed using two cut-points. The

first cut-point was the value corresponding to the maximum difference between the

sensitivity and 1-specificity values of the associated Receiver Operating Character-
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istic (ROC) curve (Hosmer & Lemeshow, 2000; JMP 6.0.0, 2005, Nominal Logistic

Regression section). The second cut-point was 0.5, which represented an uninformed

assignment of a group member to either the bridge or non-bridge class (Hosmer &

Lemeshow, 2000). The second identification approach involved partitioning the data

set into estimation and prediction data sets. The prediction data included all indi-

viduals in groups that contained only one bridge, but more than two members. The

estimation data consisted of the individuals in the remaining groups (the rationale

behind the choice of the prediction data was both the consistency and convenience

such a partitioning provided in performing the bridge detection method). A model

was fit to the estimation data, and the fitted model was then used to classify pre-

diction data members (Montgomery et al., 2001). In a similar fashion, both a ROC

curve cut-point and an uninformed cut-point were employed.

The bridge detection method was performed under the assumption that each

group communicated with at least one other group and inter-group communication

occurred only through bridge members. With this assumption, consider the case

where a group contains a single bridge, i.e. the group’s external communications

occur only through that member. Suppose the group is then altered by removing

the bridge and its associated ties from the group, i.e. no structural or demographic

evidence of the bridge remains. If subsequent classification of each member in the

altered group yields no bridges, then this may indicate the existence of an unknown

bridge or bridges. Consequently, bridge detection is performed by applying the

bridge identification model to groups that have had the bridge and its links removed,

and surveying the resulting group member classifications. The associated claim and

contribution of this research is that if groups communicate via bridges, and if bridges

have demographic and structural attributes that distinguish them from non-bridges

in their groups, then this method provides a feasible approach to detecting the

presence of an unknown bridge or bridges in the group.
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The detection approaches were similar to those of bridge identification, with

both approaches applied to the empirical data and the second approach applied to

the generated data. The first approach involved fitting a logistic regression model to

the entire data set except those members that were the sole bridges in their groups,

i.e. the data set did not contain the sole bridges or their links. Examination of

the model’s classification results for members in the altered single bridge groups

comprises the unknown bridge detection process; based on the previously stated

assumptions, where lack of an identified bridge in such groups indicates an unknown

bridge or bridges. In other words, the detection method is accomplished using a

goodness of fit test, i.e. comparison of member classification predicted by the model

to the actual label of the member. The goodness of fit test is performed using both

ROC curve and uninformed cut-points. The second detection approach partitions

the data set into estimation and prediction data sets in a manner similar to the

hidden bridge identification process. The exception is that the prediction data does

not include the sole bridges nor their links. The model fit to the estimation data is

used to classify prediction data members, using both a ROC curve cut-point and an

uninformed cut-point. The same assumption holds: lack of an identified bridge in

such groups indicates an unknown bridge.

One note about the detection approach is warranted. In order to demonstrate

that the detection approach is feasible, the prediction data contains groups composed

of non-bridge members and a single bridge. It appears logical, in most cases, that the

approach would be feasible if k > 1 bridges were present in a group; however, in any

case in which the detection approach results in none of the groups’ members being

classified as a bridge, the only inference that can be drawn about missing members is

that there is at least one bridge member missing. Consequently, the prediction data

used in this dissertation is appropriate for demonstrating the detection concept.

This section included rationale, assumptions and steps of approaches for re-

vealing bridges in social networks. Application to empirical and generated data sets
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suggests the feasibility of the approaches, and in some instances, rather promising

results as discussed in the next section.

4.3 Data Sets and Results

The above methods were implemented using both empirical and generated

data. The empirical data is referred to as the Sageman terrorist data set. Sageman

(2004a; 2004b) compiled open source data that contains detailed demographic and

relation information for 366 individuals associated with the Global Salafi movement

(Sageman, 2004b, p. 138). (The data set was provided to Clark (2005) by Sage-

man and will be referenced as Sageman (2004a)) The generated data consisted of

200 groups; 100 were 2-stars and 100 were 3-stars. Many group structures are pos-

sible, but in order to impose distinctive structural attributes to the members and

demonstrate feasibility of identification and detection approaches, a k-star structure,

k ∈ {2, 3}, was chosen. A k -star is a graph in which k vertices are connected to a

central vertex, and no other connections exist in the graph (Frank & Strauss, 1986;

Freeman, 1977; Hunter, Goodreau, & Handcock, 2008; West, 2001). While specific

inter-group connections were not made, each group had a single bridge through which

inter-group communication would flow under the assumptions of this research. Data

set details and results of analysis are provided in the following sections.

4.3.1 Sageman Terrorist Data Set: Description

In order to apply the methods, it was necessary to define a group. For this

research, a group within the Sageman (2004a) data set was defined as individuals

involved in the same terrorist operation; furthermore that operation was the mem-

ber’s only operation in which they were involved, i.e. linking pins were not considered

(Likert, 1961). Additionally, the group definition required at least two members, one

of which had to be a bridge. Given this definition, the groups analyzed contained

only bridges and non-bridges; therefore, while the operation may have included other
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members, who were involved in multiple operations, such members were not consid-

ered part of the group. This group definition simplifies the analysis, but focuses the

research and its results specifically on bridges and non-bridges.

The Sageman (2004a) terrorist data set ties include acquaintance, friendship,

nuclear family, relatives, teacher, religious leader and post-join ties. Post-join ties

are ties formed after an individual joined the movement. The teacher and religious

leader relations consisted of non-reciprocated ties; however, for this research, such

ties were considered reciprocated. The remaining relations consisted of reciprocated

ties; however, in certain instances some ties were not reciprocated. In these cases,

it was assumed the ties should have been reciprocated, and such ties were added.

Since all ties were treated as reciprocated for this analysis, the terrorist network

consists of undirected links. Consequently, inter-group communication is represented

by one or more undirected links between two or more groups. This yields another

assumption: a link between two or more groups represents communication regardless

if the original relation consisted of either non-reciprocated ties or ties that do not

necessarily imply transfer of information, e.g. a tie between relatives. Furthermore,

a single link was assumed to exist between two individuals even when more than one

type of tie existed. Any ties from a member to itself were deleted. These assumptions

and constraints produced a social network with no loops and no more than a single

undirected link between any two individuals, based on the adjusted Sageman data.

Note: Many of these assumptions were derived from Clark (2005).

After applying the above definitions and assumptions, the final data set con-

sisted of seventeen groups and a total of one hundred seventy-two individuals of

which fifty were bridges and one hundred twenty-two were non-bridges. Four of the

seventeen groups contained more than two non-bridges, but only a single bridge.

These four groups contained a total of forty-seven individuals.

The following ten covariates were examined; rationale for their use was provided

in the literature review. The decision for determining the data type of each element
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is based on information in Clark (2005), Dillon and Goldstein (1984) and Sageman

(2004a).

1. The age at which an individual joined the movement. This was treated as a

continuous covariate.

2. The education level of an individual. This covariate was treated as categorical

with level 0 representing less than a Master’s degree and level 1 otherwise.

3. The individual’s position within a group. This covariate was treated as cat-

egorical with level 0 representing a subordinate and level 1 otherwise, e.g. a

position involving logistics associated with the movement.

4. The individual’s family socioeconomic status was treated as a categorical vari-

able with level 0 representing lower and middle classes, and level 1 represented

an upper class status.

5. The individual’s number of intra-group links; treated as a continuous covariate.

6. The individual’s number of intra-group links normalized according to the group

size; treated as a continuous covariate.

7. The individual’s intra-group betweenness centrality; treated as a continuous

covariate.

8. The individual’s intra-group betweenness centrality normalized according to

the number of individuals in the group; treated as a continuous covariate.

9. An individual’s similarity to the other individuals in its group on the basis of

age and normalized intra-group links. This continuous covariate was derived

from similarity definitions/notation provided by Everitt, Landau and Leese

(2001) and Gower (1971) and is equivalent to

Si =

n∑
j=1

1

p

p∑

k=1

sijk

n− 1
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with j 6= i and n is equal to the number of individuals in the group of which

individual i is a member. Furthermore, p is the number of variables for which

similarity is derived, which is two (age and normalized intra-group degree) for

this covariate. The term sijk measures the similarity of individuals i and j for

variable k, and is scored as sijk = 1− |xi−xj |
Rk

, where Rk is the range of variable

k for individuals in the same group. The value of Si lies in the interval [0,1],

with a value of 1 indicating that individual i is exactly alike to all other group

members with respect to the two attributes.

10. An individual’s similarity to other individuals in its group, with respect to the

joining age, family socioeconomic status and education level. This continuous

covariate is defined similar to the previous covariate, except p = 3 and some

of the attributes, e.g. family socioeconomic status and education level, are

different.

Covariates 1, 2 and 4 are demographic in nature, covariates 5-8 are structural,

covariate 3 is organizational (i.e. position) and the remaining two are heterophilic.

From Sageman (2004a; 2004b), it appears the demographic covariates were attributes

possessed by group individuals when they joined the movement; a potential exception

is education level (Sageman, 2004b, pp. 103-104). This is useful because more

credence can be placed on the explanatory variables contributing to the bridge or

non-bridge nature of individuals; rather than the individual obtaining such attributes

after fulfilling the bridge role. It is important to note that the covariates chosen were

demographic or intra-group structural attributes, and not reliant upon inter-group

attributes. The only instances for which covariates were assigned values related to

non-group members was in the imputation of missing data. Missing link data was

imputed as previously mentioned. Missing demographic data was imputed as follows

(based on techniques from Clark (2005), Everitt et al. (2001), and Little and Rubin

(1987)):

1. Joining age.
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This data was calculated as the mean of the joining age of all bridge and non-

bridge members in the data set of interest. Care was taken to include attribute

data from only appropriate members. For example, if data was partitioned into

estimation and prediction data sets, then attribute imputation for members in

the estimation data set were based only on members of the estimation data

set.

2. Socioeconomic status.

If an individual did not have a socioeconomic status datum, the value assigned

was the mode of the socioeconomic status of the bridges and non-bridges in

the appropriate data set. The imputation process builds on the categories pro-

vided by Sageman (2004a): upper class (1), middle class (2) and lower class

(3); therefore, if a member was missing a status datum, it was imputed as

the mode of the status of the individuals (both bridges and non-bridges) in the

appropriate data set. Subsequently, this mode was re-categorized, according to

the categories in this dissertation, resulting in the final imputed status datum.

Categories differing from those of Sageman (2004a) were used in this disserta-

tion to maintain a reasonable number of explanatory variables as discussed by

Hosmer and Lemeshow (2000) based on a study by Peduzzi, Concato, Kemper,

Holford and Feinstein (1996).

3. Position.

If an individual did not have a position datum, the value assigned was the

mode of the position of the bridges and non-bridges in the appropriate data

set. The imputation process builds on the categories of Sageman (2004a): emir

(1), military committee (2), religious/fatwa committee (3), finance/logistics

(4), media/propaganda (5), local chief (6) and subordinate (7); therefore, if a

member was missing a position datum, it was imputed as the position mode

of the position of the individuals (both bridges and non-bridges) in the appro-
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priate data set. Subsequently, this mode was re-categorized, according to the

categories in this dissertation, resulting in the final imputed position datum.

In the provided data, some individuals were attributed more than one posi-

tion within the organization; however, the multiple positions never included

the subordinate position, and in this study these individuals were assigned a

position covariate value of 1. Additionally, these individuals’ data values were

ignored when the mode was calculated for imputation purposes.

4. Education level.

If an individual did not have an education level datum, the value assigned was

the mode of the education level of the bridges and non-bridges in the appro-

priate data set. The imputation process builds on the categories of Sageman

(2004a): less than a high school graduate (1), high school graduate (2), some

college (3), bachelor’s degree (4), master’s degree (5), and doctoral degree (6);

therefore, if a member was missing an education level datum, it was imputed

(using Clark’s categories) as the mode of of the education level individuals

(both bridges and non-bridges) in the appropriate data set. Subsequently,

this mode was re-categorized, according to the categories in this dissertation,

resulting in the final imputed education level datum.

This subsection described the Sageman data set and associated assumptions

and definitions. The results of the proposed analytic approaches are provided

in the next subsection.

4.3.2 Sageman Terrorist Data Set: Analysis and Results

The first approach to hidden bridge analysis incorporated the full data set of

172 individuals in seventeen groups. The seven continuous variables (ordered as

Age, Intra-Group Degree, Intra-Group Normalized Degree, Intra-Group Between-

ness, Intra-Group Normalized Betweenness, Similarity with respect to Age, Family
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Socioeconomic Status and Education Level, and Similarity with respect to Age and

Intra-Group Normalized Degree) were examined for multi-collinearity. Table 1 pro-

vides the W′W matrix, and Table 2 shows the (W′W)−1 matrix (note: the displayed

entries of these and subsequent W′W and W′W−1 matrices are rounded values).

The absolute value of the largest off-diagonal entry in W′W is less than 0.7, and the

variance inflation factors were less than 4.0. Given these values, multi-collinearity

was present, but not deemed to be a large problem (Montgomery et al., 2001, pp.

334, 337).

Table 1 W′W Matrix for Continuous Variables in Sageman Data

1.00 -0.04 0.13 -0.05 -0.03 -0.20 -0.24
-0.04 1.00 0.60 0.59 0.33 0.13 0.25
0.13 0.60 1.00 0.22 0.32 0.01 0.04
-0.05 0.59 0.22 1.00 0.69 0.00 -0.10
-0.03 0.33 0.32 0.69 1.00 0.11 -0.18
-0.20 0.13 0.01 0.00 0.11 1.00 0.44
-0.24 0.25 0.04 -0.10 -0.18 0.44 1.00

Table 2 (W′W)−1 Matrix for Continuous Variables in Sageman Data

1.11 0.07 -0.23 0.03 0.09 0.10 0.24
0.07 3.20 -1.69 -2.18 0.88 -0.16 -0.73
-0.23 -1.69 2.06 1.15 -0.89 0.18 0.18
0.03 -2.18 1.15 3.41 -1.96 0.33 0.38
0.09 0.88 -0.89 -1.96 2.45 -0.48 0.28
0.10 -0.16 0.18 0.33 -0.48 1.35 -0.58
0.24 -0.73 0.18 0.38 0.28 -0.58 1.58

Using a combination of fitting all covariates and forward stepwise regression

(with probability to enter = 0.25 and probability to leave = 0.1), the estimated logit,

ĝ(x), constructed was

ĝ(x) = −0.362Intra−GroupDegree + 0.122Intra−GroupBetweenness− 0.793Position
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Table 3 provides relevant model information (Garson, n.d.; Hosmer & Lemeshow,

2000; JMP 6.0.0, 2005; Montgomery et al., 2001, pp. 453-454). JMP employs cate-

gorical variable coding different from the coding listed above; therefore, 0/1 coding

in this dissertation is realized as 1/-1, respectively, in JMP. Additionally, JMP re-

ports estimates in accordance with a log odds of 0/1, so the signs of the parameter

estimates are opposite those in the above logit. Finally, “RSquare(U) is the propor-

tion of the total uncertainty that is attributed to the model fit” (JMP 6.0.0, 2005,

Nominal Logistic Regression section). The sign of the degree coefficient was differ-

ent from that suggested in some literature; however, the sign was reasonable from a

clandestine operation perspective. Table 4 provides the identification accuracy, i.e.

goodness of fit, results for the model. With the exception of bridge accuracy in the

case of an uninformed cut-point, a reasonable level of accuracy was achieved demon-

strating that, given the data and associated analysis, the identification approach is

promising.

Table 3 Information for Model Fit to Sageman Data
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 28.59246 2 57.18492 <.0001

Full 75.08487
Reduced 103.67733

  
RSquare (U) 0.2758

Observations (or Sum Wgts) 172

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 92 31.465921 62.93184
Saturated 94 43.618951 Prob>ChiSq

Fitted 2 75.084873 0.9911

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95%

Intra-Group Degree 0.36183338 0.0640678 31.90 <.0001 0.24602064 0.49923181
Between -0.1217571 0.0285105 18.24 <.0001 -0.1848439 -0.0724858

Position[0] 0.79307727 0.2041327 15.09 0.0001 0.39944986 1.20382816

The second approach to hidden bridge analysis employed an estimation data

set of the 125 individuals in thirteen groups, each containing more than one bridge.

Table 5 provides the W′W matrix, and Table 6 gives the (W′W)−1 matrix. The

absolute value of the largest off-diagonal entry in W′W is approximately 0.7, and
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Table 4 Identification Accuracy for Sageman Data Set

ROC cut-point = 0.2396 Uninformed cut-point = 0.5
Overall Accuracy 76.74% (132 individuals) 77.33% (133 individuals)
Bridge Accuracy 76% (38 bridges) 48% (24 bridges)

the largest variance inflation factor value is approximately 4.5. Given these values,

multi-collinearity was present, but not deemed to be a large problem.

Table 5 W′W Matrix for Continuous Variables in Sageman Estimation Data

1.00 -0.01 0.21 -0.09 -0.08 -0.20 -0.26
-0.01 1.00 0.48 0.69 0.43 0.20 0.29
0.21 0.48 1.00 0.28 0.41 0.01 -0.12
-0.09 0.69 0.28 1.00 0.71 -0.01 -0.05
-0.08 0.43 0.41 0.71 1.00 0.16 -0.12
-0.20 0.20 0.01 -0.01 0.16 1.00 0.46
-0.26 0.29 -0.12 -0.05 -0.12 0.46 1.00

Table 6 (W′W)−1 Matrix for Continuous Variables in Sageman Estimation Data

1.19 -0.24 -0.22 0.28 0.11 0.12 0.33
-0.24 3.81 -1.50 -3.02 1.01 -0.43 -1.20
-0.22 -1.50 1.87 1.18 -0.94 0.17 0.48
0.28 -3.02 1.18 4.51 -2.38 0.74 0.71
0.11 1.01 -0.94 -2.38 2.77 -0.70 0.16
0.12 -0.43 0.17 0.74 -0.70 1.48 -0.55
0.33 -1.20 0.48 0.71 0.16 -0.55 1.80

Using a combination of fitting all covariates and forward stepwise regression

(with probability to enter = 0.25 and probability to leave = 0.1), the estimated logit

was

ĝ(x) = −0.322Intra−GroupDegree + 0.120Intra−GroupBetweenness− 0.719Position

Table 7 provides relevant model information. Applying the previously fit logit

and associated cut-points to the prediction data (i.e. 47 members in four groups
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with multiple non-bridges, but only one bridge per group) yielded identification

accuracy results shown in Table 8 (Hosmer & Lemeshow, 2001, p. 186). The achieved

accuracy, for the provided data and associated analysis, suggests the feasibility of the

second identification approach for non-bridge members. Bridge identification results

do not appear as promising; however, this may be an artifact of the small number of

bridges, four, in the prediction data. Recall the data set partitioning was chosen for

consistency and convenience pertaining to the bridge detection process; therefore,

a different partitioning may result in greater bridge identification accuracy. For

informational purposes, Table 9 provides identification accuracy of the estimation

data.

Table 7 Information for Model Fit to Sageman Estimation Data
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 18.152627 2 36.30525 <.0001

Full 64.082706
Reduced 82.235333

  
RSquare (U) 0.2207

Observations (or Sum Wgts) 125

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 61 25.878740 51.75748
Saturated 63 38.203965 Prob>ChiSq

Fitted 2 64.082706 0.7945

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95%

Intra-Group Degree 0.32181223 0.0734415 19.20 <.0001 0.18753665 0.47818592
Between -0.1196985 0.033118 13.06 0.0003 -0.1951148 -0.0638725

Position[0] 0.71892108 0.2174291 10.93 0.0009 0.30052198 1.15754561

Table 8 Identification Accuracy for Sageman Prediction Data Set

ROC cut-point = 0.2988 Uninformed cut-point = 0.5
Overall Accuracy 87.23% (41 individuals) 89.36% (42 individuals)
Bridge Accuracy 50% (2 bridges) 50% (2 bridges)

The first approach to bridge detection required the full data set without the

four bridges that were the only bridges in their groups, i.e. 168 individuals in seven-

teen groups. Table 10 provides the W′W matrix, and Table 11 gives the (W′W)−1
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Table 9 Identification Accuracy for Sageman Estimation Data Set

ROC cut-point = 0.2988 Uninformed cut-point = 0.5
Overall Accuracy 73.6% (92 individuals) 71.2% (89 individuals)
Bridge Accuracy 78.26% (36 bridges) 50% (23 bridges)

matrix. The absolute value of the largest off-diagonal entry in W′W is less than

0.7, and the variance inflation factors were less than 3.4. Given these values, multi-

collinearity, while present, was not deemed to be a large problem.

Table 10 W′W for Continuous Variables in Sageman Data - No Sole Bridges

1.00 -0.05 0.14 -0.05 -0.01 -0.21 -0.24
-0.05 1.00 0.56 0.59 0.33 0.14 0.24
0.14 0.56 1.00 0.20 0.31 0.05 0.01
-0.05 0.59 0.20 1.00 0.69 -0.01 -0.08
-0.01 0.33 0.31 0.69 1.00 0.12 -0.16
-0.21 0.14 0.05 -0.01 0.12 1.00 0.44
-0.24 0.24 0.01 -0.08 -0.16 0.44 1.00

Table 11 (W′W)−1 for Continuous Variables in Sageman Data - No Sole Bridges

1.12 0.06 -0.22 0.06 0.04 0.14 0.21
0.06 2.96 -1.50 -2.05 0.81 -0.16 -0.66
-0.22 -1.50 1.91 1.07 -0.82 0.09 0.21
0.06 -2.05 1.07 3.38 -1.98 0.40 0.29
0.04 0.81 -0.82 -1.98 2.45 -0.51 0.27
0.14 -0.16 0.09 0.40 -0.51 1.37 -0.58
0.21 -0.66 0.21 0.29 0.27 -0.58 1.53

Using a combination of fitting all covariates and forward stepwise regression

(with probability to enter = 0.25 and probability to leave = 0.1), the estimated logit

was

ĝ(x) = −0.408Intra−GroupDegree + 0.142Intra−GroupBetweenness− 0.763Position

Table 12 provides relevant model information. Table 13 provides the identification

accuracy results for members in the four groups altered by removal of their sole
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bridges and associated links. Under previous assumptions, both the ROC and un-

informed cut-points gave possible indications that three of the four altered groups

contained an unknown bridge, i.e. a 75% detection accuracy. In altered group C, the

three non-bridges mis-identified (via the ROC cut-point) as bridges had few intra-

group links, small intra-group betweenness values and positions other than a sub-

ordinate. The single mis-identification (in the altered groups) with the uninformed

cut-point, was one of the mis-identifications occurring with the ROC cut-point. The

position of the non-bridges appears as a plausible reason for the mis-identifications.

Identification accuracy (via the ROC cut-point) of not only the altered group mem-

bers, but also all other members was 77.98% (131 members), and 73.91% (34) of

the bridges were accurately identified. Respective identification accuracy with the

unbiased cut-point was 79.17% (133 members), and 43.48% (20 bridges). The 75%

detection accuracy tentatively demonstrates the feasibility of the detection method,

but choosing other groups (with possibly different structures) from which to remove

bridges could yield similar or different results.

Table 12 Information for Model Fit to Sageman Data - No Sole Bridges
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 28.777580 2 57.55516 <.0001

Full 69.840297
Reduced 98.617877

  
RSquare (U) 0.2918

Observations (or Sum Wgts) 168

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 85 28.955276 57.91055
Saturated 87 40.885020 Prob>ChiSq

Fitted 2 69.840297 0.9892

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95%

Intra-Group Degree 0.40750403 0.0710274 32.92 <.0001 0.28006917 0.56069172
Between -0.1422658 0.0336989 17.82 <.0001 -0.217301 -0.0852081

Position[0] 0.76323372 0.2122186 12.93 0.0003 0.35348557 1.19007276

The second approach to detecting unknown bridge analysis employed the same

estimation data, model and cut-points as the second hidden bridge approach. Table

14 provides the identification accuracy results for members in the four altered groups.
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Table 13 Identification Accuracy for Sageman Altered Groups
Altered Group A 
(18 non-bridges)

Altered Group B 
(8 non-bridges)

Altered Group C         
(6 non-bridges)

Altered Group D       
(11 non-bridges)

ROC cutpoint = 0.2804 100% 100% 3 mis-IDs (50%) 100%
Uninformed cut-point = 0.5 100% 100% 1 mis-ID (83.33%) 100%

Under previous assumptions and with an uninformed cut-point, there are possible

indications that three of the four altered groups contained an unknown bridge, i.e.

a 75% detection accuracy. In altered group C, the two non-bridges mis-identified

as bridges had few intra-group links, small intra-group betweenness values and po-

sitions other than a subordinate. The ROC cut-point implementation gives possible

indications that two of the four altered groups contained an unknown bridge, i.e. a

50% detection accuracy. In altered group C, the three non-bridges mis-identified as

bridges had few intra-group links, small intra-group betweenness values and posi-

tions other than a subordinate; while in altered group A, the mis-identified member

had a position other than a subordinate. The 75% detection accuracy, in the case of

the uninformed cut-point, tentatively demonstrates the feasibility of the detection

method; however, ROC cut-point results are not as convincing.

Table 14 Identification Accuracy for Sageman Altered Groups (Prediction Data)
Altered Group A 
(18 non-bridges)

Altered Group B 
(8 non-bridges)

Altered Group C         
(6 non-bridges)

Altered Group D       
(11 non-bridges)

ROC cutpoint = 0.2988 1 mis-ID (94.44%) 100% 3 mis-IDs (50%) 100%
Uninformed cut-point = 0.5 100% 100% 2 mis-IDs (66.67%) 100%

For the Sageman data and associated analysis, the identification and detection

approaches showed some promise in an operational setting, with a few exceptions.

Data containing more bridges was desirable and was a motivation for generating

test data; however, prior to providing those results an excursion into the problem of

inserting detected nodes is presented.

In groups with an inferred unknown node, the question of where to insert the

unknown node remains. It is assumed, for now, that only one unknown node per
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group exists. Since the node is a bridge, π(x) = 1; however, this is only realized in

the limit since the logistic function is π(x) = 1
1+e−g(x) (Hosmer & Lemeshow, 2000,

p. 32; Kleinbaum & Klein, 2002, pp. 5-6; Montgomery et al., 2001, pp. 445, 449).

Despite this asymptotic constraint, two approaches to node insertion are suggested.

The simplest tactic is the following heuristic: Connect the inferred bridge to any

node with which the similarity of demographic attributes is 0.5 or greater. The

next tactic is to derive, possibly multiple, structures by minimizing −ĝ(x) subject

to feasibility constraints imposed by ĝ(x) and the extant structure; thus maximizing

π̂ (Hosmer & Lemeshow, 2000). The following analysis examines each approach as

applied to altered Group B in the second bridge detection approach to the Sageman

data.

The heuristic approach assigns the inferred node, xunknown, the average age of

members, and the mode for education level, family socioeconomic status and posi-

tion. Based on the eight non-bridges in altered Group B, the imputed demographic

attributes of xunknown are age joined = 25, education level = 0, family socioeconomic

status = 0, and position = 0. The resulting similarities of xunknown are greater than

0.5 indicating the unknown node, i.e. bridge, is connected to all other members. The

resulting structure is equivalent to the ground truth structure; however, the true de-

mographic attributes of xunknown were age joined = 25, education level = 1, family

socioeconomic status = 0, and position = 1. Consequently, the similarity (cf. previ-

ously provided definition) between the imputed and true demographic attributes of

xunknown is 0.5.

The second approach is as follows. It is desired to minimize

−ĝ(x) = 0.322Intra−GroupDegree− 0.120Intra−GroupBetweenness + 0.719Position

The minimum of −g(x) occurs when Intra-Group Degree = 0, Intra-Group Be-

tweenness = max group betweenness, and Position = -1 (in JMP coding; 1 in the

original coding); however, according to centrality definitions, it is not possible for
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Intra-Group Degree = 0 and Intra-Group Betweenness > 0 (e.g. Freeman, 1977, pp.

36-37). Consequently, it is necessary to evaluate the structure according to degree

and betweenness parametrics. The structure of the extant nodes is known, in this

case, and it is a clique; consequently, the betweenness of the unknown node will

always be zero, but its degree could vary from 0 to 8. Given these constraints, the

minimum of −ĝ(x) occurs when Intra-Group Degree = 0, Intra-Group Betweenness

= 0 and Position = -1 resulting in −ĝ(x) = −0.719; therefore, maximizing π̂ = 0.672.

The true intra-group degree of the bridge was 8 not 0, but the remaining covariate

values matched; consequently, the resulting structure is not equivalent to the ground

truth structure.

The results of the analysis on the Sageman data give some demonstration of

the feasibility of the developed method for revealing bridge elements in real world,

operational social networks. Additionally, two approaches were provided for inserting

detected bridges into a group. More results for the revelation method were desired;

therefore, data was generated and analyzed. Results are provided in the following

section.

4.3.3 Generated Data Set: Analysis and Results

In order to further examine the feasibility of the identification and detection

methods, bridge and non-bridge attribute data were generated for 700 members in

100 2-stars and 100 3-stars (These members/groups were generated once, but the

group member attributes, as well as, the assignment of the groups to estimation and

prediction data were re-accomplished for each of the four cases discussed later in

this section). Each group was assigned a single bridge, which permits demonstration

of the detection method. Furthermore, the groups were not connected to form a

network, per se; however, it is assumed each group communicates with at least one

other group, and that inter-group communication occurs only via bridges. Since

the detection method does not rely upon inter -group links, the method can still
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be reliably performed using the created groups, i.e. without the formal network

structure. An array of demographic and structural attributes can be associated

with bridges and non-bridges; however, age and intra-group degree centrality were

chosen for this test. The assumption was that bridges would typically be older

and have more contacts than non-bridges; however, other assumptions could easily

be implemented. Additionally, even though the age and degree-centrality values

were only permitted to be integers, they were treated as continuous, not ordinal,

variables in the analysis (Dillon & Goldstein, 1984, pp. 2-3). The analysis approach

was to increase the variability of the age and intra-group degree centrality values so

that the distinction between bridges and non-bridges decreased. For each amount

of variability, the detection method was implemented and results analyzed. Four

cases were examined: No overlap, moderate (i.e. small) overlap, large overlap and

approximately random assignment of attributes (permitting up to 100% overlap).

The amount of overlap was determined by sampling a random age and intra-group

degree centrality value from two different intervals, i.e. an interval for the bridge

and an interval for the non-bridges. The age intervals are given in Table 15.

Table 15 Age Intervals for Members in Generated Groups

Non-Bridge Bridge
No Overlap [24,26] [29,31]

Moderate Overlap [22,28] [27,33]
Large Overlap [20,30] [25,35]

Random Overlap [20,35] [20,35]

The probabilities for assigning a particular node in the 2- and 3-stars as the

bridge (there is only one bridge per group) are provided in Tables 16 and 17, respec-

tively. This assignment process constituted the generation of the degree centrality

attribute of the group members. In the case of no overlap, bridges are always the cen-

ter nodes, i.e. 2(3)-degree nodes, and non-bridges are always pendant, i.e. 1-degree,

nodes. In the moderate and large overlap cases, the center node in the k-star is the

bridge, with approximate probabilities 0.7 and 0.4, respectively. The probabilities

69



in the tables are approximate (except for the no overlap case) due to the chosen

partitioning and precision issues.

Table 16 Node/Bridge Assignment Probabilities for Generated 2-stars

"left" pendant node center node "right" pendant node
No Overlap 0 1 0

Moderate Overlap 15% 70% 15%
Large Overlap 30% 40% 30%

Random Overlap 33.33% 33.34% 33.33%

Table 17 Node/Bridge Assignment Probabilities for Generated 3-stars
"left" pendant node "central" pendant node "right" pendant node center node

No Overlap 0 0 0 100%
Moderate Overlap 10% 10% 10% 70%

Large Overlap 20% 20% 20% 40%
Random Overlap 25% 25% 25% 25%

As previously mentioned, the approach for identification and detection involved

randomly splitting the generated groups into estimation and prediction data. A

75% (estimation) and 25% (prediction) split of the groups was implemented. In the

assignment of bridge nodes, the attribution of age to group members and data set

partitioning, the random number generator seed was not tracked (more than one

software was used to generate random numbers); furthermore, the order in which

these tasks were performed may not have been the same for every case. There were

also instances of a task/random number being re-accomplished/regenerated, while

other tasks/random numbers were not. Consequently, it is possible some cases and

tasks employed the same seeds resulting in group/member correlation among the

cases; however, this potential correlation was ignored in the analysis.

It is important to note that structural information can be used without the

regression model, in certain cases, to detect the existence of unknown members.

For example, if the group structure is known to be a 2-star or 3-star, then any

2 member group implies a missing member. This is addressed in the analysis by
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only removing the 3-star bridges. Another example involves a group with three

members, each having intra-group degree centrality 0. This also implies, in the

case where groups are either 2-stars or 3-stars, a missing member. Consequently,

if there is little to no variability and overlap for the structural regressor and the

group structure is constrained, then detection of bridges can, in some cases, be

ascertained by structural information alone. These situations are somewhat related

to the topic of reconstructing a group/network from observing partial information

of the group/network, which is discussed in Chapter 5.

In the no overlap case, collinearity, ρ = 0.88, existed between age and intra-

group degree centrality for the estimation data. The estimation data consisted of

150 randomly selected groups (78 3-stars and 72 2-stars) containing 528 members of

which 150 were bridges. Age was chosen as the single covariate and the estimated

logit, ĝ(x), was

ĝ(x) = −403.94 + 14.68age

Table 18 provides the model information. Only models containing main effects with-

out covariate transformations were examined. The prediction data for the identi-

fication method contained the remaining 172 members in 50 groups of which 22

were 3-stars and 28 were 2-stars. All prediction data members were correctly clas-

sified using the fitted model for both the uninformed and ROC cut-points, 0.5 and

0.99, respectively. A ROC cut-point of 1.0 was identified by the statistical software;

however, for algorithmic purposes, the cut-point was treated as 0.99.

Analysis of bridge detection, for the no overlap case, involved removing all

3-star bridges from the prediction data. There were 22 such single-bridges, leaving

150 members in the prediction data. The model fit to the estimation data was

used, and the goodness of fit assessment performed on the prediction data, using an

unbiased cut-point of 0.5 and a ROC cut-point of 0.99, resulted in 100% accuracy

in classification for both cut-points. Under previous assumptions, the 22 unknown

bridges are inferred, which is understandable since no overlap exists. As previously
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Table 18 Information for Model Fit to Generated Estimation Data - No Overlap
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 315.09754 1 630.1951 <.0001

Full 0.00000
Reduced 315.09754

  
RSquare (U) 1.0000

Observations (or Sum Wgts) 528

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 4 3.90698e-8 7.814e-8
Saturated 5 0 Prob>ChiSq

Fitted 1 3.90698e-8 1.0000

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq

Intercept  Unstable 403.94392 94158.11 0.00 0.9966
Age  Unstable -14.678876 3461.4457 0.00 0.9966

mentioned, these bridges could also be inferred by observing only the structure of

the groups.

In the case of moderate overlap, the correlation coefficient between age and

intra-group degree centrality for the estimation data was ρ = 0.47. The estimation

data consisted of 150 randomly selected groups (75 3-stars and 75 2-stars) containing

525 members. The estimated logit was

ĝ(x) = −49.03 + 1.63Age + 2.12Intra−GroupDegree

Table 19 provides the model information. Only models containing main effects with-

out covariate transformations were examined, even though the associated lack of fit

p-value was 0.2177. The prediction data contained the remaining 175 members in 50

groups of which 25 were 3-stars and 25 were 2-stars. Table 20 provides the results

for the identification method, i.e. prediction data member classification accuracy.

In both of the cut-point cases, the bridges misclassified as non-bridges had an age

of 27 and a degree centrality of either 1 or 2. Likewise, the non-bridges classified as
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bridges had an age of 28 and a degree centrality of 2 or 3. The identification method

is effective when a moderate overlap exists between the attributes of bridges and

non-bridges.

Table 19 Information for Model Fit to Generated Estimation Data - Moderate Overlap
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 231.19906 2 462.3981 <.0001

Full 82.89248
Reduced 314.09153

  
RSquare (U) 0.7361

Observations (or Sum Wgts) 525

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 31 18.405920 36.81184
Saturated 33 64.486557 Prob>ChiSq

Fitted 2 82.892477 0.2177

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95%

Intercept 49.0296806 6.7393875 52.93 <.0001 37.4583508 64.0849646
Age -1.6295735 0.2368039 47.36 <.0001 -2.1582189 -1.2226693

Intra-group Degree Centrality -2.1167881 0.2875043 54.21 <.0001 -2.7199261 -1.5860171

Table 20 Identification Accuracy for Generated Groups with Moderate Overlap

ROC cut-point = 0.3105 Uninformed cut-point = 0.5

Overall Accuracy 98.29% (172 individuals) 97.14% (170 individuals)

Bridge Accuracy 98% (49 bridges) 94% (47 bridges)

Analysis of bridge detection involved removing the 25 3-star bridges from the

identification method’s prediction data, appropriately modifying the degree of the

remaining 3-star members, and applying the fitted model of the moderate overlap

estimation data to the new prediction data, i.e. the remaining 150 members. It

should be noted that pendant nodes were assigned as bridges in 5 of the 25 3-stars;

therefore, removal of those bridges resulted in an ‘ambiguous’ structure that ap-

peared to be a 2-star, i.e. structural inspection alone would not indicate if there was

a missing group member. The detection results for the 150 members in the detection

method prediction data are provided in Table 21. The detection of unknown bridges

is promising for both cut-points, even in the case of ambiguous 2-stars; furthermore,
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only the uninformed cut-point incorrectly detected the presence of unknown bridges,

and there were only 2 such false positives. Identification accuracy (via the ROC cut-

point) of not only the altered group members, but also all other members was 98.67%

(148 members), and 100% (25) of the bridges were accurately identified. Respective

identification accuracy with the unbiased cut-point was 97.33% (146 members), and

92% (23 bridges). The detection accuracy provides a demonstration of the feasibil-

ity of the detection method in the case of moderate overlap between the assigned

attributes of bridges and non-bridges in the 2- and 3-star group structures.

Table 21 Detection Accuracy for Generated Groups with Moderate Overlap
ROC cut-point = 0.3105 Uninformed cut-point = 0.5

Correctly Inferred Unknown Bridges in 3-stars 96% (24 bridges) 96% (24 bridges)
Correctly Inferred Unknown Bridges in Ambiguous 2-stars 80% (4 bridges) 80% (4 bridges)

Incorrectly Inferred Unknown Bridges in True 2-stars 0% (0 bridges) 8% (2 bridges)

In the case of large overlap, the correlation coefficient between age and intra-

group degree centrality for the estimation data was ρ = 0.11. The estimation data

consisted of 150 randomly selected groups (78 3-stars and 72 2-stars) containing 528

members. Since the fit using only models containing main effects without covari-

ate transformations was poor (Probability > χ2 = 0.0562), other variations were

examined. The estimated logit was

ĝ(x) = −1.39 + 1.52 log(Intra−GroupDegree)

The correlation coefficient between age and the natural logarithm of intra-group

degree centrality was ρ = 0.13. Table 22 provides the model information. The

prediction data contained the remaining 172 members in 50 groups of which 22

were 3-stars and 28 were 2-stars. Table 23 provides the results for the identifica-

tion method, i.e. prediction data member classification accuracy. As anticipated,

the identification method is less promising when a large overlap exists between the

attributes of bridges and non-bridges since there is less distinction.
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Table 22 Information for Model Fit to Generated Estimation Data - Large Overlap
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 23.93455 1 47.86909 <.0001

Full 291.16299
Reduced 315.09754

  
RSquare (U) 0.0760

Observations (or Sum Wgts) 528

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 1 0.62031 1.240625
Saturated 2 290.54268 Prob>ChiSq

Fitted 1 291.16299 0.2654

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95%

Intercept 1.38862339 0.1268538 119.83 <.0001 1.1457102 1.64365131
Log(Intra-group Degree Centrality) -1.5220611 0.2226925 46.71 <.0001 -1.9631274 -1.0888662

Table 23 Identification Accuracy for Generated Groups with Large Overlap

ROC cut-point = 0.4174 Uninformed cut-point = 0.5
Overall Accuracy 61.63% (106 individuals) 61.63% (106 individuals)
Bridge Accuracy 6% (3 bridges) 6% (3 bridges)

Analysis of bridge detection involved removing the 22 3-star bridges from the

identification method’s prediction data, appropriately modifying the degree of the

remaining 3-star members, and applying the fitted model of the large overlap esti-

mation data to the new prediction data, i.e. the remaining 150 members. Of the 22

3-stars, 19 had an ‘ambiguous’ structure. The detection results for the 150 members

in the detection method prediction data are provided in Table 24. The detection re-

sults are not so promising, because even though all unknown bridges were correctly

inferred, all 28 2-star bridges were mis-identified thus inferring 28 unknown bridges.

Identification accuracy (via both cut-points) of not only the altered group members,

but also all other members was 81.33% (122 members), but 0% (0) of the bridges

were accurately identified.

Given the results for the large overlap case, the previously discounted model

(without the logarithmic transformation) was employed and results compared with

the model in Table 22. The secondary model information is given in Table 25, and
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Table 24 Detection Accuracy for Generated Groups with Large Overlap
ROC cut-point = 0.4174 Uninformed cut-point = 0.5

Correctly Inferred Unknown Bridges in 3-stars 100% (22 bridges) 100% (22 bridges)
Correctly Inferred Unknown Bridges in Ambiguous 2-stars 100% (19 bridges) 100% (19 bridges)

Incorrectly Inferred Unknown Bridges in True 2-stars 100% (28 bridges) 100% (28 bridges)

the estimated logit was

ĝ(x) = −2.2 + 0.85Intra−GroupDegree

Table 26 provides the identification method results. The results are similar to the

original model results, except the ROC cut-point case has less overall accuracy, but

higher bridge accuracy. The secondary model detection results are provided in Table

27. The results are somewhat different than the first model, but are also not promis-

ing. While the ROC cut-point approach did not incorrectly infer bridges in the true

2-stars, there were still many misclassifications (40.48%) in the 2-stars. Identifica-

tion accuracy (via the ROC cut-point) of not only the altered group members, but

also all other members was 64.67% (97 members), and 39.29% (11) of the bridges

were accurately identified. Respective identification accuracy with the unbiased cut-

point was 81.33% (122 members), and 0% (0 bridges). For the data and attributes

imposed in the large overlap case, the detection method accuracy (for either model)

is less than desirable, either due to straightforward inaccuracies or false-positives.

In the random overlap case, the correlation coefficient between age and intra-

group degree centrality for the estimation data, was ρ = −0.06. The estimation data

consisted of 150 randomly selected groups (70 3-stars and 80 2-stars) containing 520

members. The estimated logit was

ĝ(x) = −0.85 + 0.01Age− 0.16Intra−GroupDegree

Table 28 provides the model information. The prediction data contained the remain-

ing 180 members in 50 groups of which 30 were 3-stars and 20 were 2-stars. Table
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Table 25 Information for Secondary Model Fit to Generated Estimation Data - Large Overlap
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq

Difference 22.73148 1 45.46296 <.0001

Full 292.36606

Reduced 315.09754

  

RSquare (U) 0.0721

Observations (or Sum Wgts) 528

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 1 1.82338 3.646758

Saturated 2 290.54268 Prob>ChiSq

Fitted 1 292.36606 0.0562

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95%

Intercept 2.20094714 0.2229241 97.48 <.0001 1.77112665 2.64596253

Intra-group Degree Centrality -0.8456359 0.1271004 44.27 <.0001 -1.0978102 -0.5986531

Table 26 Identification Accuracy for Generated Groups with Large Overlap - Secondary Model

ROC cut-point = 0.3753 Uninformed cut-point = 0.5
Overall Accuracy 58.14% (100 individuals) 61.63% (106 individuals)
Bridge Accuracy 28% (14 bridges) 6% (3 bridges)

Table 27 Detection Accuracy for Generated Groups with Large Overlap - Secondary Model
ROC cut-point = 0.3753 Uninformed cut-point = 0.5

Correctly Inferred Unknown Bridges in 3-stars 13.64% (3 bridges) 100% (22 bridges)
Correctly Inferred Unknown Bridges in Ambiguous 2-stars 0% (0 bridges) 100% (19 bridges)

Incorrectly Inferred Unknown Bridges in True 2-stars 0% (0 bridges) 100% (28 bridges)
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29 provides the results for the identification method, i.e. prediction data member

classification accuracy. As expected, the identification method is less promising than

when the attributes of bridges and non-bridges are moderately overlapped.

Table 28 Information for Model Fit to Generated Estimation Data - Random Overlap
Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 0.70971 2 1.419412 0.4918

Full 311.68987
Reduced 312.39958

  
RSquare (U) 0.0023

Observations (or Sum Wgts) 520

Lack Of Fit
Source DF -LogLikelihood ChiSquare

Lack Of Fit 45 24.02309 48.04618
Saturated 47 287.66678 Prob>ChiSq

Fitted 2 311.68987 0.3505

Parameter Estimates
Term  Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95%

Intercept 0.84750777 0.6343441 1.78 0.1815 -0.3907989 2.09960086
Age -0.0060315 0.0211546 0.08 0.7756 -0.0476006 0.03544149

Intra-group Degree Centrality 0.15768686 0.1406569 1.26 0.2623 -0.1119469 0.44117759

Table 29 Identification Accuracy for Generated Groups with Random Overlap

ROC cut-point = 0.2972 Uninformed cut-point = 0.5
Overall Accuracy 38.89% (70 individuals) 72.22% (130 individuals)
Bridge Accuracy 78% (39 bridges) 0% (0 bridges)

Analysis of bridge detection involved removing the 30 3-star bridges from the

identification method’s prediction data, appropriately modifying the degree of the

remaining 3-star members, and applying the fitted model of the random overlap esti-

mation data to the new prediction data, i.e. the remaining 150 members. Of the 30

3-stars, 23 had an ‘ambiguous’ structure. The detection results for the 150 members

in the detection method prediction data are provided in Table 30. As expected, the

detection method is not consistently capable of a high detection accuracy and a low

false-positive rate, when there are not discriminatory features between bridges and

non-bridges. Regarding the ROC cut-point approach, there were 36 (of 60) misclassi-

fied 2-star members, but none of those incorrectly implied the existence of unknown
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bridges. Identification accuracy (via the ROC cut-point) of not only the altered

group members, but also all other members was 26% (39 members), and 80% (16) of

the bridges were accurately identified. Respective identification accuracy with the

unbiased cut-point was 86.67% (130 members), and 0% (0 bridges).

Table 30 Detection Accuracy for Generated Groups with Random Overlap
ROC cut-point = 0.2972 Uninformed cut-point = 0.5

Correctly Inferred Unknown Bridges in 3-stars 0% (0 bridges) 100% (30 bridges)
Correctly Inferred Unknown Bridges in Ambiguous 2-stars 0% (0 bridges) 100% (23 bridges)

Incorrectly Inferred Unknown Bridges in True 2-stars 0% (0 bridges) 100% (20 bridges)

Application of the proposed approaches to the generated data suggests feasibil-

ity for revealing bridge elements; especially in situations involving much dissimilarity

between bridge and non-bridge members. The next section provides overall conclu-

sions regarding the developed methods.

4.4 Conclusion

This chapter provided results demonstrating the feasibility of the developed

method for revealing bridge elements in social networks. The feasibility was demon-

strated on both empirical and generated data sets. Evident from the analysis, is

the fact that in order for the method to provide reasonable results (i.e. high clas-

sification accuracy and/or low false positive rates) there must be attributes that

distinguish a bridge from a non-bridge. While this analysis focused on social net-

works, the method should be feasible on other network types; assuming there are

distinct connection nodes. In fact, data from a physical system network would likely

be ‘cleaner’, i.e. contain less variation; consequently, improved classification results

would be expected. As previously mentioned, there may exist conditions under

which observations of partial network structures can result in the revelation of other

network elements.

79



5. Network Reconstruction

5.1 Introduction

This chapter provides a new framework for reconstructing a network from its

subnetworks, a general formula for reconstruction accuracy within the framework

and a demonstration of the results of the associated analysis. The framework devel-

oped in this dissertation is a natural extension of graph reconstruction with applied

probability, but was not found in the reviewed literature. This framework provides

an approach to assessing possible network structures; furthermore, insight into po-

tential mis-identification can be derived from the associated analysis.

5.2 Network Reconstruction Framework

The framework developed in this dissertation extends graph (i.e. network)

reconstruction by adding the possibility of repeat observations. The specific problem

statement associated with the framework follows: Given a n node network with

unknown structure represented by an unlabeled graph, Gu, what is the duration

required to reconstruct, if possible, Gu, and the accuracy of the reconstruction as

time progresses (and hence the number of observations increases) under the following

conditions (Bollobás, 2001, p. 42; Erdős & Rényi, 1960, p. 20; Harary, 1964; Harary

& Plantholt, 1985; Myrvold, 1988, 1990)

1. There are only enough resources to observe n− 1 nodes with their associated

links in a single time step.

2. Repeat observations of a subnetwork are possible, i.e. it is not guaranteed that

a subnetwork (subgraph) will be observed once and only once. Consequently,

it is possible that a subgraph may be observed frequently, or not at all.

This framework and the associated definition of accuracy are related to three

research areas:
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1. Ally and adversary reconstruction numbers; also referred to as existential

and universal reconstruction numbers (Baldwin, 2003; Harary & Plantholt,

1985; Hemaspaandra, Hemaspaandra, Radziszowski, & Tripathi, 2007; Myr-

vold, 1988, 1990, 1992). Essentially, the reconstruction numbers address the

question of the required amount of information (i.e. duration) to reconstruct

a graph (Bondy & Hemminger, 1977). Manvel (1969) proposed the question

regarding the number of any (i.e. randomly selected) vertex deleted subgraphs

required for reconstruction (J. Bondy, personal communication, February 5,

2008; Bondy & Hemminger, 1977).

2. The number of non-isomorphic graphs that can be reconstructed from an in-

complete set of vertex deleted subgraphs, which is interwined with the previous

research area (Bryant, 1971; Hemaspaandra et al., 2007). The legitimate sub-

deck and subdeck checking problems, as given in Hemaspaandra et al. (2007),

are closely related to this research problem. In order to understand the two

(sub)problems, it is necessary to explain the legitimate vertex deck and ver-

tex deck checking problems. In the legitimate vertex deck problem, the entire

set of vertex-deleted subgraphs, i.e. a deck, is provided and one attempts to

determine if the deck is legitimate, i.e. is there some graph that could have

generated the deck (Bondy & Hemminger, 1977; Harary, 1969; Hemaspaandra

et al., 2007; Nash-Williams, 1978). Hemaspaandra et al. (2007) state that in

the vertex deck checking problem both a deck and a graph are provided, and

the question is whether the deck could have been generated by the given graph;

consequently, the legitimate subdeck and subdeck checking problems are anal-

ogous to the legitimate vertex deck and vertex deck checking problems, except

partial decks, i.e. subdecks, are provided instead of entire decks. Hemaspaan-

dra et al. (2007) studied the computational complexity of (sub)deck problems,

to include reconstructing graphs from subdecks. An example, given by Hemas-

paandra et al. (2007), of reconstruction from subdecks is that of Harary and
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Palmer (1966), who researched construction of trees from maximal subtrees.

One final point is that the set reconstruction conjecture can be considered a

special case of subdeck reconstruction, assuming the deck contains at least two

isomorphic subgraphs.

3. The identification problem in reconstructability analysis. Similarities include

attempting to identify an overall unknown system from subsystems, and cap-

turing the behavior of the generative system via conditional probabilities (Klir,

1985, pp. 15, 114-115). There is, however, a key difference between this frame-

work and the identification problem; specifically, the identification problem

assumes the variables are labeled (Klir, 1985, p. 38). This is not the case for

this reconstruction framework since the network is represented by an unlabeled

graph.

This effort complements the above research areas by providing a definition

and an application of network reconstruction accuracy in a probabilistic fashion.

Additionally, reconstruction duration is addressed.

Prior to developing definitions, notations and formulas for the graph/network

reconstruction framework with repeat observations, the analog is provided for tradi-

tional graph reconstruction.

5.2.1 Framework for Traditional Graph Reconstruction

Traditional graph reconstruction examines the reconstructability of graphs,

and the number of vertex deleted subgraphs required to uniquely, up to isomor-

phism, reconstruct a graph (Bondy, 1991; Harary & Plantholt, 1985; Lauri, 1987,

1992; Myrvold, 1988). In this dissertation, it is assumed Gu is reconstructable;

therefore, the focus is on the duration and/or accuracy of reconstructing Gu from

observations of vertex deleted subgraphs. In such a context, accuracy is defined

as the probability of reconstructing Gu given the current and previous subgraph

observations. This definition is conceptually similar to a function describing the
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behavior of a generative system as provided in Klir (1985). Additionally, duration

is defined as the number of observations required to reconstruct Gu. Since vertex

deleted subgraphs are observed once and only once in traditional graph reconstruc-

tion, the shortest and longest reconstruction durations are equivalent to the ally and

adversary reconstruction numbers (RNs), respectively (assuming the reconstruction

conjecture is true) (Hemaspaandra et al., 2007; Myrvold, 1988).

The following constraints, definitions and notation comprise the framework

applied to traditional graph reconstruction.

1. Gu: An undirected, reconstructable graph from which vertex deleted subgraphs

are observed. Gu is unknown to the observer, and represents an unknown

network structure.

2. |Gu| is the number of vertices of Gu; also referred to as the order of Gu (Myr-

vold, 1990). |Gu| is known to the observer.

3. Su is the set of vertex deleted subgraphs of Gu, and |Su| = |Gu|. Since the

vertex deleted subgraphs in Su may not be unique, Su can be considered a

multiset (Blizard, 1989; Baldwin, 2003; Harary, 1964; Hemaspaandra et al.,

2007; Kelly, 1957).

4. Each vertex deleted subgraph may be observed only once; consequently, the

number of observations is in [1, . . . , |Gu|]. Note: If non-isomorphic vertex deleted

subgraphs were observed instead of vertex deleted subgraphs, then this frame-

work could address set reconstruction.

5. Gi is the ith isomorphism class of a graph with |Gu| vertices (Chemical Rubber

Company, 1996, p. 201).

6. Si is the (multi)set of vertex deleted subgraphs of Gi, and |Si| = |Gi| = |Gu|.

7. A k-permutation of Si is an ordered sequence of k (where 1 ≤ k ≤ |Si|)
of the |Si| vertex-deleted subgraphs of Gi. The (multi)set of all possible k-

permutations of Si is denoted k-pSi
. The number of k-permutations of Si, i.e.
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|k-pSi
|, equals |Si|!

(|Si|−k)!
(Cormen, Leiserson, Rivest, & Stein, 2001, pp. 1095-

1096). Traditionally, a k-permutation consists of a sequence of elements not

occurring more than once in the sequence. In graph reconstruction, the el-

ements, i.e. vertex-deleted subgraphs, would be unique if labeled; therefore,

an ordering of vertex-deleted subgraphs constitutes a k-permutation. Never-

theless, the problem of reconstructing unlabeled vertex-deleted subgraphs may

result in a k-permutation containing elements that appear to occur more than

once in the sequence. Consequently, k-pSi
may also contain ‘repeat’ elements;

therefore, k-pSi
may be considered a multiset.

8. The (multi)set of k-permutations of Su is denoted k-pSu , and corresponds to

the possible observation sequences of k of the |Su| vertex-deleted subgraphs of

Gu.

9. For reasons previously discussed, some k-permutations of Su may be isomor-

phic, and hence indistinguishable from the observer’s perspective since Gu is

unknown. In this framework, observation sequence jk is the jth non-isomorphic

k-permutation of Su, and is denoted obseqjk (Harary, 1964; Lauri, 2004). Fur-

thermore, mS(e) denotes the multiplicity of element e in multiset S (Blizard,

1989; Bogart, 1983, p. 44; Hickman, 1980; Syropoulus, 2000; Wikipedia, 2008).

Note that k represents the number of observations, i.e. the time step.

10. Implementing the notation above yields the following definition of accuracy:

Prob{Gu = Gi| obseqjk} =
mk-pSi

(obseqjk)∑
i mk-pSi

(obseqjk)

This definition of accuracy takes into account the fact that it may be possible

to reconstruct more than one graph from the given observation sequence (Bald-

win, 2003; Devore, 1987; Stockmeyer, 1976 as cited in Bondy, 1991). Taken

together these graphs form the reconstruction family of the observation se-

quence (Klir, 1985). Determining the reconstruction family of an observation
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sequence has similarities with the legitimate subdeck and subdeck checking

problems.

An example and associated results of this framework are provided for all 4 iso-

morphism classes for a simple graph with three vertices shown in Figure 4 (Chemical

Rubber Company, 1996, p. 201). If Gu = G1, then j = 1 ∀ k. Table 31 displays

the associated observation sequences and accuracies. In this case, the ally RN =

adversary RN = duration = 3.

G1 G2 G3 G4

Figure 4 The Four Isomorphism Classes of a Three Vertex Graph

Table 31 Accuracy Statistics for Gu = G1

0.00.170.330.5k = 1

0.00.00.250.75k = 2

0.0

P(Gu=G2 | obseq1k)

0.00.01.0k = 3

P(Gu=G4 | obseq1k)P(Gu=G3 | obseq1k)P(Gu=G1 | obseq1k)obseq1k

If Gu = G2, then there are j = 2 non-isomorphic observation sequences for

k = 1, and j = 3 non-isomorphic observation sequences for k = 2, 3. Tables 32,

33 and 34 contain the observation sequences and associated accuracies for obseqj1,

obseqj2 and obseqj3, respectively.

The subgraph observation order is relevant to accuracy, which is in keeping

with the notion of ally and adversary ordering (Bondy, 1991; Myrvold, 1988, 1990).

Additionally, the ally RN = adversary RN = duration = 3 for Gu = G2. This example
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Table 32 Accuracy Statistics for Gu = G2 and obseqj1

00.170.330.5j = 1

0.50.330.170.0j = 2

P(Gu=G2 | obseqj1) P(Gu=G4 | obseqj1)P(Gu=G3 | obseqj1)P(Gu=G1 | obseqj1)obseqj1

Table 33 Accuracy Statistics for Gu = G2 and obseqj2

000.250.75j = 1

00.50.50.0j = 2

0.5

P(Gu=G2 | obseqj2)

00.50.0j = 3

P(Gu=G4 | obseqj2)P(Gu=G3 | obseqj2)P(Gu=G1 | obseqj2)obseqj2

Table 34 Accuracy Statistics for Gu = G2 and obseqj3

0010j = 1

0010j = 2

1

P(Gu=G2 | obseqj3)

000j = 3

P(Gu=G4 | obseqj3)P(Gu=G3 | obseqj3)P(Gu=G1 | obseqj3)obseqj3
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illustrates that partial results can be misleading as evidenced by the accuracy values

for G1 and G2 for obseq1k in the tables, i.e. G1 is the most probable candidate for

Gu until all subgraphs are revealed. Consequently, in this example, choosing the

graph with the highest accuracy given partial information, i.e. k < 3 is not the

best method for reducing the risk. An alternative method is to choose a member

of the reconstruction family that minimizes error (Klir, 1985; G. J. Klir, personal

communication, May 26, 2007). This follows from the fact that risk can be considered

a measure involving both probability, i.e. accuracy, and severity (Haimes, 2004;

Lowrance, 1976). Consider the case of obseq11 with error defined as the symmetric

difference between a graph and all other graphs in the reconstruction family (Banks

& Carley, 1994; Kemeny, 1959). In this case, the reconstruction family consists of

graphs G1, G2 and G3, and the respective errors are 3, 2 and 3. Consequently, using

only symmetric difference as a measure of risk, G2 would be chosen as the least

risk alternative for obseq11. In the case of obseq12, there is not a unique least error

solution; hence one would possibly ‘fall back’ on accuracy as the selection method,

which would lead to an incorrect conclusion regarding Gu. Nevertheless, studying

both accuracy and error measurements may provide an analyst or decision-maker

with valuable risk mitigation insight in cases where the graphs under consideration

represent real world networks and systems.

If Gu = G3, then there are j = 2 non-isomorphic observation sequences for

k = 1, and j = 3 non-isomorphic observation sequences for k = 2, 3. The observation

sequences and associated accuracies for obseqj1 are the same as those in Table 32.

Tables 35 and 36 contain the observation sequences and associated accuracies for

obseqj2 and obseqj3, respectively. The subgraph observation order is again relevant

to accuracy; furthermore, partial results can be misleading. The ally RN = adversary

RN = duration = 3 for Gu = G3.
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Table 35 Accuracy Statistics for Gu = G3 and obseqj2

0.750.250.00.0j = 1

0.00.50.50.0j = 2

0.5

P(Gu=G2 | obseqj2)

0.00.50.0j = 3

P(Gu=G4 | obseqj2)P(Gu=G3 | obseqj2)P(Gu=G1 | obseqj2)obseqj2

Table 36 Accuracy Statistics for Gu = G3 and obseqj3

0100j = 1

0100j = 2

0

P(Gu=G2 | obseqj3)

010j = 3

P(Gu=G4 | obseqj3)P(Gu=G3 | obseqj3)P(Gu=G1 | obseqj3)obseqj3

If Gu = G4, then j = 1 ∀ k. Table 37 displays the associated observation

sequences and accuracies. In this case, the ally RN = adversary RN = duration =

3.

Table 37 Accuracy Statistics for Gu = G4

0.50.330.170.0k = 1

0.750.250.00.0k = 2

0.0

P(Gu=G2 | obseq1k)

1.00.00.0k = 3

P(Gu=G4 | obseq1k)P(Gu=G3 | obseq1k)P(Gu=G1 | obseq1k)Obseq1k

This section provided a framework, with notation and a definition of accuracy,

and results for the traditional reconstruction framework. From the results, it is seen

that a large overlap between two graphs’ vertex-deleted subgraphs contributes to

the reconstruction accuracy. The overlap depends upon the diversity, i.e. number,
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of isomorphism classes of the vertex-deleted subgraphs generated by each graph.

This concept illustrates how diversity can impact the number of possible orderings

which in turn affects the duration, and the monotonicity of accuracy (Baldwin,

2003; Hemaspaandra et al., 2007; McMullen, 2005; Myrvold, 1988; Stockmeyer,

1976 as cited in Bondy, 1991). The next section examines a framework for graph

reconstruction when repeat observations of elements in Su are permitted.

5.2.2 Framework for Modified Graph Reconstruction

The following constraints, definitions and notation comprise the framework

applied to a modification of graph reconstruction; specifically, a framework in which

subgraphs may be observed once or more than once; additionally, a subgraph or

subgraphs may not be observed at all.

1. Gu: An undirected, reconstructable graph from which vertex deleted subgraphs

are observed. Gu is unknown to the observer, and represents an unknown

network structure.

2. |Gu| is the number of vertices of Gu; also referred to as the order of Gu (Myr-

vold, 1990). |Gu| is known to the observer.

3. Su is the set of vertex deleted subgraphs of Gu, and |Su| = |Gu|. Since the

vertex deleted subgraphs in Su may not be unique, Su can be considered a

multiset.

4. Each vertex deleted subgraph in Su is denoted, in a manner similar to Harary

(1964), as Vu,l where l = 1, . . . , |Su|. Furthermore, each Vu,l may be observed

an a priori unknown number of times, rVu,l
.

5. Gi is the ith isomorphism class of a graph with |Gu| vertices.

6. Si is the set of vertex deleted subgraphs of Gi, and |Si| = |Gi| = |Gu|.

7. A string of Si is a sequence of vertex-deleted subgraphs in Si (by definition,

elements in a string may be repeated). A string of length k is referred to as a
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k-string. The (multi)set of all possible k-strings of Si is denoted k-stSi
. The

number of k-strings of Si, i.e. |k-stSi
|, equals |Si|k (Cormen et al., 2001, p.

1095).

8. The set of k-strings of Su is denoted k-stSu , and corresponds to the possible

observation sequences containing k observations. Since repeat observations are

permissible, it is possible that k ≥ |Su|. Each observation in a k-string of Su

corresponds to a vertex-deleted subgraph, i.e. Vu,l; furthermore, rVu,l
≤ k ∀ l, k

(Hemaspaandra et al., 2007, p. 114).

9. Some k-strings of Su may be isomorphic, and hence indistinguishable from the

observer’s perspective since Gu is unknown. Observation sequence jk is the

jth non-isomorphic k-string of Su, and is denoted obseqjk.

This framework can be considered a generalization of the traditional (and set)

reconstruction framework/problem. If vertex deleted subgraphs of Gu are being

observed and k ≤ |Gu| and rVu,l
≤ 1 ∀ l, then the modified framework is identical to

the traditional reconstruction framework/problem. If non-isomorphic vertex deleted

subgraphs of Gu are being observed and k is less than or equal to the number

of non-isomorphic vertex deleted subgraphs of Gu and rVu,l
= 1 ∀ l s.t. l is the

numerical identifier associated with a non-isomorphic vertex deleted subgraph, then

the modified framework can represent the set reconstruction problem.

Other graph reconstruction aspects can also be addressed by the extended

framework. For example, since k represents the total number of observations, which

impacts the number of possible observations of each vertex-deleted subgraph, (ally)

reconstruction numbers can be addressed as follows: Determine the minimum num-

ber of observations, k, of vertex deleted subgraphs, i.e. Vu,l, that must be observed

in order to reconstruct Gu given that rVu,l
≤ 1; consequently, k ≤ |Gu|, assuming

the reconstruction conjecture holds (Harary & Plantholt, 1985; Hemaspaandra et

al., 2007, p. 114).
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Implementing the notation above yields the following definition of accuracy

(conceptually similar to a function describing the behavior of a generative system as

provided in Klir (1985)) for the modified reconstruction framework in which all, not

just the non-isomorphic, vertex-deleted subgraphs may be observed:

Prob{Gu = Gi| obseqjk} =
mk-stSi

(obseqjk)∑
i mk-stSi

(obseqjk)

An example and associated results of the modified framework are provided for

all 4 isomorphism classes for a simple graph with three vertices shown in Figure 4. If

Gu = G1, then j = 1 ∀ k; however, since repeat observations are permitted 0 ≤ rVu,l
.

Additionally, k could be greater than 3 since repeat observations are permitted; how-

ever, for illustrative purposes, Table 38 displays the associated observation sequences

and accuracies for 1 ≤ k ≤ 3.

Table 38 Modified Accuracy Statistics for Gu = G1

0.00.170.330.5k = 1

0.00.070.290.64k = 2

0.22

P(Gu=G2 | obseq1k)

0.00.030.75k = 3

P(Gu=G4 | obseq1k)P(Gu=G3 | obseq1k)P(Gu=G1 | obseq1k)Obseq1k

For all k, Gu cannot be unambigously reconstructed as G1; therefore, the

duration is considered infinite (Hemaspaandra et al., 2007). Nevertheless, it is most

probable, given the observations, that Gu = G1. As previously discussed, error could

also be evaluated in order to form a conclusion that addresses risk.

If either Gu = G2 or Gu = G3, then there are j = 2 non-isomorphic observation

sequences for k = 1, j = 4 non-isomorphic observation sequences for k = 2 and j = 8

non-isomorphic observation sequences for k = 3. Tables 39, 40 and 41 contain the
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observation sequences and associated accuracies for obseqj1, obseqj2 and obseqj3,

respectively.

Table 39 Modified Accuracy Statistics for Gu = G2 and obseqj1

00.170.330.5j = 1

0.50.330.170.0j = 2

P(Gu=G2 | obseqj1) P(Gu=G4 | obseqj1)P(Gu=G3 | obseqj1)P(Gu=G1 | obseqj1)obseqj1

Table 40 Modified Accuracy Statistics for Gu = G2 and obseqj2

0.00.50.50.0j = 3

0.00.070.290.64j = 1

0.00.50.50.0j = 2

0.07

P(Gu=G2 | obseqj2)

0.640.290.0j = 4

P(Gu=G4 | obseqj2)P(Gu=G3 | obseqj2)P(Gu=G1 | obseqj2)obseqj2

The subgraph observation order is relevant to accuracy; however, since repeat

observations are permitted, accuracy values can be misleading. Additionally, the

above example illustrates, in the context of repeated observations, why the set re-

construction conjecture holds only for graphs with four or more vertices. Regardless

of the number of observations, if Gu is either G2 or G3, one cannot distinguish be-

tween the two graphs (Bondy, 1978; Harary, 1964). Consequently, the duration is

infinite when Gu is either G2 or G3. In similar applications where a system cannot be

reconstructed given current observations, it may be reasonable to choose a threshold

accuracy value that, if exceeded, will be considered sufficient to claim Gu = Gi, i.e.

continue observations until accuracy is greater than or equal to some value. For ex-

ample, assume a threshold value of 0.8 was chosen; furthermore, assume the current

observations are those in obseq73 of Table 41. If the next observation is composed

92



Table 41 Modified Accuracy Statistics for Gu = G2 and obseqj3

0.00.330.670.0j = 3

0.00.670.330.0j=4

0.00.670.330.0j=5

0.00.670.330.0j=6

0.00.030.220.75j=7

0.00.330.670.0j = 1

0.00.330.670.0j = 2

0.03

P(Gu=G2 | obseqj3)

0.750.220.0j=8

P(Gu=G4 | obseqj3)P(Gu=G3 | obseqj3)P(Gu=G1 | obseqj3)obseqj3

of another set of two vertices that are not connected, then the accuracies associated

with G1, G2 and G3 would be 0.83, 0.16 and 0.01, respectively. Consequently, G1

would be chosen as the reconstruction of Gu based on exceeding the threshold value

of 0.8.

If Gu = G4, then j = 1 ∀ k. Table 42 displays the associated observation

sequences and accuracies for 1 ≤ k ≤ 3. For all k, Gu cannot be unambigously

reconstructed as G4; therefore, the duration is considered infinite. Nevertheless, it

is most probable, given the observations, that Gu = G4.

The following example considers the four vertex graph, G1, in Figure 5, to be

Gu, and provides a finite duration reconstruction within the modified framework.

There are eleven classes of graphs (containing four vertices) which are not isomor-

phic (West, 2001, p. 11). Figure 5 contains graphs from four of the classes based on

possible reconstructions given the observation sequence shown in Table 43. A few

remarks are in order. First, accuracy may be misleading given partial information;
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Table 42 Modified Accuracy Statistics for Gu = G4

0.50.330.170.0k = 1

0.640.290.070.0k = 2

0.03

P(Gu=G2 | obseq1k)

0.750.220.0k = 3

P(Gu=G4 | obseq1k)P(Gu=G3 | obseq1k)P(Gu=G1 | obseq1k)Obseq1k

however, partial information can aid in constraining the reconstruction family. For

example, the first observation in Table 43 reduces the number of possible reconstruc-

tions from all eleven classes to four classes. Consequently, partial information can

provide a measure of accuracy. Second, the observation sequence impacts accuracy

(magnitude and monotonicity) and duration (‘short’, ‘long’, infinite). These two

concepts are interrelated and in accordance with the notion of reconstruction infor-

mation/numbers (Harary & Plantholt, 1985; Manvel, 1969; Myrvold, 1988). Lastly,

if the observation sequence had been slightly modified, i.e. three isolates, followed

by the path subgraph, followed by the connected dyad with the isolate, the result

would have been the same as a set reconstruction attempt.

G1 G2 G3 G4

Figure 5 Four Graphs with Four Vertices

Given the modified framework, where repeat observations of all vertex deleted

subgraphs are possible (and consequently, the possibility exists that not every sub-

graph will be observed), it is conjectured that the only cases in which reconstruction

of Gu, with |Gu| > 3, can be guaranteed are those in which all appropriate non-

isomorphic vertex-deleted subgraphs have been observed. In order for the observed

non-isomorphic vertex-deleted subgraphs to be ‘appropriate’, the non-isomorphic el-
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Table 43 Accuracy Statistics for Finite Duration Reconstruction

0.00.670.00.33k=3

0.00.00.01.0k=4

0.1250.250.50.125k = 1

0.0450.180.730.045k = 2

P(Gu=G2 | obseqjk) P(Gu=G4 | obseqjk)P(Gu=G3 | obseqjk)P(Gu=G1 | obseqjk)obseq1k

ements of Su can not be contained in any other single Si. This constraint is necessary

because the possibility of repeat observations would preclude one from determining

whether Gu was the true graph, or if Gi was the true graph but all non-isomorphic

vertex deleted subgraphs of Gi had not yet been observed. This constraint is related

to, but more stringent than, that imposed by the set reconstruction conjecture. Given

the conjecture for the modified framework, the only graph in Figure 5 that can be re-

constructed is G1; furthermore, reconstruction is only possible if all non-isomorphic

elements, i.e. vertex deleted subgraphs, of G1 have been observed. Consequently,

both constraints (i.e. observation of all non-isomorphic vertex deleted subgraphs in

Su, and the non-isomorphic subgraphs not being a subset of any other Si) form a

necessary and sufficient condition for reconstruction in the modified framework.

This section provided a framework, with notation and a definition of accuracy,

and results for the modified reconstruction framework in which repeat observations

of the vertex deleted subgraphs are permitted. Examples illustrating the modified

framework and associated accuracy and duration concepts were presented. As in

traditional reconstruction, the observation sequence impacts the accuracy and dura-

tion.
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5.3 Conclusion

This chapter provided an extension to network reconstruction that encom-

passes possible repeat observations of vertex deleted subgraphs, as well as possible

non-observations. Traditional reconstruction poses reconstruction in terms of the

number of subgraphs required to reconstruct the original network. This research as-

sociates that number, in a time context, i.e. the duration to reconstruct, since repeat

observations are permissible. Additionally, stochasticity is addressed via the defini-

tion of accuracy introduced in the modified framework. Both accuracy and duration

are affected by the sequence of observations, as well as, the set of non-isomorphic

vertex deleted subgraphs. The modified framework is a more general formulation for

network reconstruction, and can address an, arguably, more difficult reconstruction

problem. In the next chapter, the reconstruction of causal networks is addressed.

Additionally, a method for determining plausible social influence network structures,

and hidden individuals therein, is presented.
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6. Social Influence Networks

6.1 Introduction

This chapter introduces a method that couples social network influence con-

cepts with causal exploratory analysis to facilitate determining social influence net-

work (SIN) structures and revealing hidden individuals within such networks. The

method is demonstrated using real-world data. Additionally, incorporating causality

concepts into network reconstruction is addressed.

6.2 Background

Social influence networks are networks composed of individuals who may exert

influence on each other. Causal exploratory analysis is the process of obtaining

causal relations among variables of interest from empirical data. Based on concepts

discussed in the literature review, e.g. asymmetry of influence, causal networks are

chosen to represent influence networks, and the causal networks are represented as

directed acyclic graphs (DAGs) (March, 1955, pp. 436-437). Furthermore, in certain

cases, it may be appropriate to assume the network nodes act in concert for some

purpose, so isolates are not present; hence, the DAGs would be connected. While the

focus in this section is on social influence networks, the methods presented can be

applied to a variety of other networks that operate on the principle of a node causing

effects on or influencing another node or nodes. The contributions associated with

this portion of the research are:

1. A method, based on causal exploratory analysis, to determine candidate struc-

tures of social influence networks.

2. Detection of unrevealed individuals in social influence networks using causality

principles.
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3. A method that formalizes the integration of graph reconstruction with causal

exploratory analysis and provides associated accuracy metrics.

6.3 Methodology

The following sections provide the methods for each contribution.

6.3.1 Social Influence Network Exploratory Analysis

In order to explore various social influence network structures, it is important

to identify both influencing and influenced individuals. Often these individuals (and

possibly some of the influence relationships among them) are known prior to analy-

sis. Just as in Bayesian belief networks (Cooper & Herskovits, 1992), prior relational

knowledge can be incorporated in social network analysis (Doreian, 2001; Friedkin,

1998). The prior relational knowledge has been derived from, for example, ties be-

tween individuals and subsequently embedded in and expressed via the W matrix of

the network model, y = αWy + βXb + u, where W represents the SIN (Friedkin,

1990, 1998). In this research, exploratory analysis is used in an attempt to identify,

from empirical data and prior (but usually incomplete) knowledge, influence relation-

ships among known individuals. In fact, the resulting causal relationship structure

represents the SIN and could be loosely considered a proxy for W by modifying

certain constraints given in Friedkin (1986). Furthermore, exploratory analysis can

lead to the revelation of previously unconsidered or unknown individuals. Another

requirement of exploratory analysis, in the current context, is identifying a measure-

ment or measurements of causality/influence so that probabilistic independencies

between the nodes can be calculated (Geiger & Pearl, 1990, pp. 3, 10; Pearl 1988,

pp. 81-86, 89 91-94, 116-119, 122; Shipley, 2002, pp. 8-9, 36-37, 90-94; Spirtes et al.,

2000, pp. 43-44, 82, 139; Verma & Pearl, 1990, p. 71; Verma & Pearl, 1991, pp. 256,

264). Independency calculations between nodes of causal models representing some

network types (e.g. engineered networks) are, generally, not too difficult; however,
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in social networks, more scrutiny is required. As noted by Spirtes et al. (2000),

the causal Markov condition may not hold when proxies are used in causal analysis

(cf. Salmon (1984)); nevertheless, this is foundational research to which other ac-

tions, such as appropriately defining variables may eliminate such errors (Spirtes et

al., 2000, p. 37). As previously discussed, this research will examine a single event

category, i.e. a single relation, in exploratory analysis.

The following approach is demonstrated for exploratory analysis of a SIN using

a single relation.

1. Identification of a set of individuals.

2. Selection of an event category used to measure influence between individuals

in the social network.

3. Production of candidate SIN structures from causal exploratory analysis of

empirical data. In this dissertation, causal modeling software, Tetrad IV, is

employed (Glymour, Scheines, Spirtes, & Ramsey, 2004b).

As discussed in the literature review, the causal inference algorithms may out-

put a partially oriented graph; consequently, the true causal structure is not uniquely

determined (Richardson, 1996; Shipley, 2002, pp. 256-260; Silva, 2005, pp. 9, 24;

Spirtes et al., 1993, pp. 180-183; Spirtes et al., 2000, pp. 6, 59, 61, 82-87, 139-140;

Zhang, 2004). Nevertheless, one could derive graphs from the output, and, if desired,

compare them against a conjectured ’ground truth’ SIN structure (Glymour et al.,

2004b; Joreskog & Sorbom, 1995, p. 22; Shipley, 2002, pp. 102-103; Spirtes et al.,

2000; Verma & Pearl, 1991). In order to measure the difference between the proposed

‘ground truth’ graph, g1, and a graph, g2, derived from the output, a function based

on a metric given in Banks and Carley (1994) is employed. The metric provided in

Banks and Carley (1994) is: d+(g1, g2) = tr[(G1 −G2)
T (G1 −G2)] where Gi is the

adjacency matrix of gi. According to Banks and Carley (1994), this is a directed

network variant of the Kemeny (1959) metric. In order to address latent variables,
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the method in this research assumes that each double-headed arrow adds one unit

of distance. For example, if the output SIN contains a single double-headed arrow,

then the distance from the ‘ground truth’ network is the directed network metric

result for the network variables which do not contain the double-headed arrow, plus

one unit. Figure 6 provides an illustrative example for two different cases.

A

CB

Distance

1 unit

A

CB

‘Ground truth’ SIN Output SIN

Case 1

A

CB

A

CB

1 unitCase 2

Figure 6 Distance Function Example

6.3.2 Detecting Unrevealed Individuals in Social Influence Networks

Results from exploratory analysis may contain a bi-directed arc between two

variables. One possible interpretation of such an arc is the presence of a hidden vari-

able that directly causes the original two variables (Glymour et al., 2004a, 2004b;

Shipley, 2002, pp. 26, 256, 266-267; Spirtes et al., 2000, pp. 125, 144-145; Verma &

Pearl, 1991). In the single relation SIN previously discussed, such a variable indicates

a hidden individual, in that event category, directly influencing two known individ-

uals in the SIN. This is due to the assumption (based on the reasoning provided by

March) that the association between events corresponds to influence between indi-

viduals in that particular activity. (March, 1953-54, pp. 469-470; March, 1955, pp.

435-436) Consequently, revealing a hidden individual in a SIN is accomplished by

simply performing exploratory analysis, and examining the results for appropriate
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indicators. In order to validate this approach, the event category data for an indi-

vidual in the SIN is removed, subsequent exploratory analysis is conducted, and the

output is examined for appropriate hidden variable indicators (Shipley, 2002, pp.

266, 267; Spirtes et al., 2000, pp. 144-145; Glymour et al., 2004a, 2004b).

6.3.3 Causal Graph Reconstruction

This section addresses the coupling of graph reconstruction with causality con-

cepts. Consider a DAG, DAGu, that represents a causal network. Since causal

network nodes influence other nodes, DAGu contains labeled nodes so that mean-

ingful causal analysis can be performed (Heise, 1975, pp. 39-40, 45; Verma & Pearl,

1991, pp. 256). Harary and Manvel (1970) proved that every graph with at most

two unlabeled vertices require no more than three of its vertex deleted subgraphs

in order to be reconstructed. Consequently, reconstruction of a fully labeled causal

graph, i.e. a social influence network, is possible; however, ambiguity regarding the

structure of DAGu may arise if less than three subgraphs are provided. Furthermore,

the notion of equivalent causal structures complicates the situation (Verma & Pearl,

1991, pp. 256).

The following approach will be employed to develop a framework for recon-

structing labeled DAGs representing causally sufficient networks, i.e. networks with

no latent common causes of variables in the variable set of interest (Shipley, 2000,

pp. 259-260, 264-266; Spirtes et al., 2000, p. 22). The associated method assumes

the existence of a stable, stationary causal structure having reached a static value at

the observation time, and an observer is given parts of the structure, i.e. the observer

is not required to perform exploratory analysis to determine the causal substructure.

(Heise, 1975, pp. 48-49, James et al., 1982, p. 49) The causal structure is unknown

to the observer, but the number, n ≥ 3, of nodes is known. Additionally, each causal

subgraph is given once and only once.
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1. At each time step, ti, i = 1, 2, 3, a vertex deleted subgraph dagti containing n−1

labeled nodes and their associated edges, is provided. Additionally, there are

n! possible sequences (denoted provseqj, j = 1, 2, . . . , n!) in which subgraphs

can be provided; however, per Harary and Manvel (1970), the first three (or

less) subgraphs of each sequence suffice to reconstruct DAGu. Consequently,

at a maximum, there are n(n− 1)(n− 2) relevant sequences.

2. Determine the set of possible reconstructions, poss recti given the subgraphs

viewed through ti; note that poss rect3 = DAGu . A related measure of

accuracy, i.e. the probability of choosing the correct causal graph given the

subgraphs viewed through ti, is defined as part accti ≡ |poss recti|−1. This

definition of accuracy is derived from the notions of reconstruction family and

uniform prior probabilities (Cooper & Herskovits, 1992; Klir, 1985).

3. After any time step, causal exploratory analysis (i.e. independence tests) may

be performed for the n nodes to determine the set of equivalent causal graphs,

pats. The set (poss recti ∩ pats) contains equivalent causal graphs consistent

with the causal substructures provided through ti. Consequently, an associated

measure of accuracy, i.e. the probability of choosing the correct causal graph

given the subgraphs viewed through ti and exploratory analysis of the n nodes,

can be derived as follows: aug accti ≡ |(poss recti ∩ pats)|−1.

4. Continue this process until the graph has been reconstructed or a desired num-

ber of time steps has been completed.

The result of this approach is a measure or understanding of the feasible solu-

tions, the variety of such solutions and, hence, the amount of uncertainty regarding

possible solutions, i.e. social influence networks (Michalewicz & Fogle, 2002). Addi-

tionally, insight is gained regarding the value of prior knowledge, i.e. the provided

causal substructures, and the timing of independence tests. The value of prior knowl-

edge may help identify where one might try to intervene in the network, in order

to obtain further information on the true causal structure (Shipley, 2002, pp. 258-
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260). These considerations can aid analysts and decision makers in assessing risks

associated with accepting a particular reconstruction as the solution.

An alternative but related approach/perspective is to perform independence

tests before any causal substructures are provided. Subsequently varying the se-

quence of provided causal substructures should give insight (as did the previous

approach) regarding the contributory value of each causal substructure in accurately

determining the true causal graph. In this approach, the definition of poss recti is

slightly modified, and becomes the set of possible reconstructions given both the

subgraphs viewed through ti and the result of the independence tests. The modi-

fied poss recti produces a modified part accti that is equivalent to aug accti ; hence,

one could also derive the information from this alternative perspective directly from

aug accti .

6.4 Data and Results

Based on ideas from Bullock and Brady (1983) and March (1955), the SIN

analysis data consisted of five United States Senators: Senator Reid, Senator Biden,

Senator Harkin, Senator Brown and Senator Cardin. The event category chosen was

the voting activity of Senate members. The roll call votes of the five Senators during

the 110th Congress from 1 January 2007 - 19 Jun 2008 comprised the data. There

were 596 such votes; however, not all five Senators always voted (United States Sen-

ate, 2007, 2008a). In such cases, these data points were removed resulting in a final

data set of 383 votes. The rationale for choosing these five Senators included the fact

that their positions indicated a somewhat apparent chain of command, i.e. a poten-

tial ‘ground truth’ network. Additionally, the choice was made in order to permit

causal exploratory analysis; consequently, the individuals were chosen on a notion

that they related to one another asymmetrically with respect to influence; therefore,

the SIN could be represented by a DAG and examined via causal analysis. Future

research could examine relaxing the asymmetrical influence assumption (cf. Friedkin
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(1986)) via algorithms for causal exploratory analysis that address directed cycles

(Richardson, 1996). Senator Reid was the Senate majority leader, while Senators

Brown and Cardin were freshmen (United States Senate, 2008b, 2008c). Senators

Biden and Harkin were chairmen of committees of which Senators Cardin and Brown,

respectively, were members. Additionally, Senators Biden and Harkin were members

of one other committee to which Senators Cardin and Brown, respectively, were

members (Senate of the United States, 2007a, 2007b). Another factor influencing

the choice of these five Senators was the desire to control for political party since it

was assumed that influence within the same party would be greater than across par-

ties. Consequently, the five Senators chosen belong to the Democratic party (United

States Senate, 2008d). The network ‘ground truth’ was characterized as a hierar-

chical chain of command as shown in Figure 7. It should be noted, however, that

this illustrative example is a simplification of the complexities of the U.S. Senate. In

studying the detection of hidden individuals in a SIN, the data on the Senators was

used. The data set to illustrate causal graph reconstruction consists of connected,

labeled DAGs with three vertices and two edges; however, the analysis approach can

be applied to larger, labeled DAGs.

Reid

Biden Harkin

BrownCardin

Figure 7 Chain of Command for Five Senators

6.4.1 Assumptions and Limitations

In order to apply the FCI algorithm, it is necessary to define random variables,

i.e. nodes. For the illustrative data analyzed in this dissertation, a node represents a

Senator’s votes, the units are individual roll call votes and the possible values are yea

and nay. These representations were chosen for clarity and causal contextual rea-
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sons as given in Cooper (1999), Howard (1988), Scheines, Spirtes, Glymour, Meek,

& Richardson (1995) and Spirtes et al. (2000). The FCI algorithm, used in this dis-

sertation to accomplish causal exploratory analysis, requires the Causal Markov and

faithfulness conditions to hold (for the distribution to which the measured variables

belong); otherwise incorrect results are possible (Cooper, 1999; Scheines et al., 1995;

Spirtes et al., 2000). Spirtes et al. (2000) provide a discussion of the conditions, and

when it is inappropriate to assume they hold (elaborations of the concepts are given

in Scheines et al. (1995) and Shipley (2000)) (Spirtes et al., 2000, pp. 32-42, 124,

296). Spirtes et al. (2000) state that,

The Causal Markov Condition does not apply to systems of variables
in which some variables are defined in terms of other variables, nor to
systems with interunit causation ...even when [the Causal Markov Condi-
tion] is true of the population described by some data-generating process,
it may not characterize the conditional independence relations found for
measured variables in a sample due to:

1. sampling error;

2. causal relations between the sampling mechanism and the observed
variables...;

3. lack of causal sufficiency among the measured variables...;

4. aggregation of variable values...;

5. when one variable is a function of another variable by definition...;

6. samples in which for some units A causes B and for other units B
causes A;

7. reversible systems.

(p. 296)

Varying results are also possible if the algorithm is implemented with different

alpha values (Shipley, 2002; Spirtes et al., 2000, p. 351). The research objectives,

i.e. either attempting to derive many potential structures, or high confidence in the

resulting structures, will dictate the choice of the alpha value and affect the power

of involved tests (Devore, 1987, pp. 277-287; Law & Kelton, 2000, pp. 257-258;

Scheines et al., 1995; Shipley, 2002; Spirtes et al., 2000, pp. 115-121, 204-205).
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This concept is examined in the following section. The Faithfulness condition can

be violated in mixed distributions and when variables have relationships that are

deterministic (Spirtes et al., 2000, pp. 39-40, 53). For the method presented in this

dissertation, it was assumed both the Causal Markov and Faithfulness conditions

held. With respect to the illustrative example, the variables are not defined in

terms of each other; however, there is some interunit causation (Spirtes et al., 2000;

Sober, 1988). There may also exist other issues corresponding to the above concepts

and itemized list, as well as other potentially problematic issues (e.g. results when

discrete variables are used as discussed in Devore (1987) Fienberg (1977, 2007),

Larntz (1978) and MacDonald (2008)) (Spirtes et al., 2000, pp. 95, 140, 351; Scheines

et al., 1995). Nevertheless, the research presented here is focused on introducing a

method to assist in identifying SIN structures and reveal hidden individuals in a

SIN. Future research could examine the viability of analyzing a SIN (and obtaining

satisfactory data) in the manner presented in this dissertation.

Regarding the interpretation of FCI output and its application in this research,

some concepts and associated interpretations follow. First, according to Glymour

et al. (2004a), an arrow from one variable to another, “... indicates that there is a

causal pathway ... connecting the two variables ... It does not necessarily mean that

in the true causal graph, the connected variables have a direct causal connection.”

(Spirtes, personal communication, October 2008; Glymour et al., 2004a, p. 113).

This concept is reiterated in discussions of direct cause and specifying associated

mechanisms (Scheines et al., 1995; Shipley, 2000; Spirtes et al., 2000). Alternatively,

Merton (1957) defined interpersonal influence in terms of direct interaction between

individuals (and one could specify this as forceful physical interaction, e.g. as given

in the account of Seattle riots by Gillham and Marx (2000) and the definition in

Merton (1949)); furthermore, Merton (1949) specifically did not concern himself

with aspects of political and administrative power (on masses of individuals) in

his study of interpersonal influence in a community. Notwithstanding the role of
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Merton’s interpersonal influence definition and research in forming concepts of this

dissertation, this research does not limit interpersonal influence to direct interaction.

Consequently, an arc from one individual to another represents the existence of an

influence pathway, i.e. relationship, from the former to the latter, and this may

occur through unobserved (and in some cases, observed) individuals (Richardson,

1996; Scheines et al., 1995; Scheines, Spirtes, Glymour, Meek, & Richardson, 1998;

Shipley, 2000; Spirtes et al., 2000; Spirtes, personal communication, October 2008).

It is certainly possible that there are no unrevealed individuals (mediating or

otherwise), in the social network under examination. If this is the case, then an arc

can be interpreted akin to the interpersonal influence definition in Merton (1957)

(Scheines et al., 1995; Shipley, 2000; Spirtes et al., 2000). It is also possible that

there are mediating individuals (in a directed path from the former to the latter)

who are unrevealed; such hidden individuals are not detectable given the method

presented in this research. If it was desired to examine interpersonal influence in

the sense of Merton (1957), one could still apply this method but a constrained and

scrutinized data set would be required.

Second, as indicated in Merton (1949), some may not consider the illustrative

example’s political arrangement as a SIN. This research employs the Wasserman

and Faust (1994) definition of a social network, which is rather broad; therefore, the

political arrangement is considered a SIN. Regardless of one’s definition of a social

network, the contribution of the method in this dissertation stands.

Third, as discussed in previous chapters and assumed in this research, influ-

ence is examined vis-á-vis causal exploratory analysis. Causal analysis does not

necessarily yield results one might consider in the realm of ‘traditional’ influence.

Consider the illustrative example: causal exploratory analysis does not require a yea

vote by one member to yield a yea vote by another member (as in the discussion

on voting in March (1955)); a plausible interpretation could be that a yea vote by

one member yields a nay vote by the other member (Spirtes et al., 2000, p. 21).
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Consequently, one might consider such results as counter-influence vice ‘traditional’

influence (as possibly interpreted from the definition of interpersonal influence in

Merton (1957)). This dissertation assumes the more inclusive view of influence, i.e

both counter-influence and ‘traditional’ influence are realizable.

6.4.2 Social Influence Network Exploratory Analysis

Causal exploratory analysis of the Senator data yielded the structure in Figure

8. The analysis was performed using Tetrad’s FCI algorithm, which produces causal

structures based on independence tests among the variables. The null hypothesis for

such tests is that (sets of) variables are (conditionally) independent, and α = 0.05

for the analysis resulting in Figure 8 (Pearl, 2001; Spirtes et al. 2000; Verma &

Pearl, 1991). Based on simulation results mentioned in Spirtes et al. (2000), the

independence test employed was the G2 test vice the X2 test (Spirtes et al., 2000,

p. 95). Shipley (2000) and Scheines et al. (1995) (in part based on tests by Shipley

(1997) and those recorded in Spirtes et al. (2000)) recommend varying the value

of α; consequently, additional analyses were conducted for α values of 0.1, 0.15, 0.2

and 0.3. The first three values produced the output shown in Figure 9, while the 0.3

level produced the graph in Figure 10. The differences in the structures of Figures

9 and 10 are edge orientations (or the lack thereof), and are likely due to the level

at which the independence tests were conducted, which Spirtes et al. (2000) cited

as a factor that could affect FCI output (Spirtes et al., 2000, p. 351). As expected

according to the null hypothesis, the number of edges increased with the significance

level (Devore, 1987; Scheines et al., 1995). In the output of FCI, an edge between

variables indicates some (causal) association, and as indicated in Figure 8, edges

may have circles at the endpoints, where a circle indicates that an arrowhead may

or may not be present subject to certain constraints, e.g. no cycles (Glymour et al.,

2004a; Meek, 1995; Pearl, 1988; Shipley, 2002; Spirtes et al., 2000). Consequently,
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at least two equivalent causal graphs, shown in Figure 11, can be derived from the

α = 0.05 output.

If background knowledge had been provided, the search of candidate structures

and resulting output could be reduced (Spirtes et al., 2000). The FCI algorithm

permits the possibility that latent variables (representing common causes) may exist

in the data, and in the illustrative example’s output, this possibility is realized. In

such cases, there is an unlimited number of equivalent structures due to infinite

representations possible with latent variables (Scheines et al., 1998; Silva, 2005). If

the number of latent variables was constrained as in Zhang (2004), the number of

equivalent causal structures would be finite (Silva, 2005, pp. 9, 24).

Figure 8 Causal Exploratory Results for Five Senators, α = 0.05

Figure 9 Causal Exploratory Results for Five Senators, α = 0.1 = 0.15 = 0.2

Some interesting insights can be extracted from the output for α = 0.05. First,

there is no direct influence relationship between Senators Reid and Harkin. Second,

there is an influence relationship from Senator Harkin (a committee chairman) to

Senator Brown (a respective committee freshman), and a possible influence relation-
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Figure 10 Causal Exploratory Results for Five Senators, α = 0.3

Reid

Biden

Cardin

Harkin

Brown

Reid

Biden

Cardin

Harkin

Brown

Figure 11 Causal Exploratory Derivatives for Five Senators, α = 0.05

ship from Senator Harkin (a committee chairman) to Senator Cardin (a freshman).

The analogous relationships are not present between Senators Biden, Cardin and

Brown. An interesting note is that it was not originally realized that Senators

Cardin and Harkin were co-members on the same committee; however, the analysis

identified an influence relationship between the two Senators. Third, there exists

an influence relationship from a freshman (Senator Brown) to a chairman (Senator

Biden) of a different committee. Lastly, there does exist influence between freshmen,

i.e. from Senator Cardin to Senator Brown. Not all insights are intuitive, and further

investigation could be accomplished in such areas.

As evidenced in Figure 8, there is disparity between the proposed ‘ground

truth’ and exploratory structures. The baseline disparity includes one edge oriented

differently, two absent edges and four additional edges. From this baseline, further

discrepancies can arise due to edge direction of partially oriented edges. Under

the assumption that a double-headed arrow always adds one unit of distance, the

minimum distance from the two potential structures to the ‘ground truth’ network

is eight units. As a reference, the maximum possible distance from the ground truth
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network is fourteen units without any causal (orientation) constraints, given the

above assumption (Glymour et al., 2004a; Meek, 1995; Spirtes et al., 2000). Multiple

reasons could account for the disparity, such as the need to include other event

categories or characteristics (e.g. personal attributes such as conservative or liberal;

cf. Batt (2002), Project Vote Smart (2008), Smith (2001) and United States Senate

(2008e)), an incorrect ground truth structure, the need for more data (since sample

size and cell counts affect independence tests per Devore (1987), Fienberg (1977,

2007), Larntz (1978), MacDonald (2008) and Spirtes et al. (2000)), or the need for

data that satisfies the underlying algorithmic assumptions. Spirtes et al. (2000) list

these and other potential reasons (Spirtes et al., 2000, p. 351). Each rationale could

be further explored in order to provide additional insights; regardless, the previous

analyses shows how the method identifies potential SIN structures, compares various

structures and assists in gleaning SIN insights.

Regarding the output of FCI and the underlying algorithm, it appears that the

imposition of constraints after the independence tests, may produce a structure that

is not in accordance with the independence tests. This was observed in the structure

produced when α = 0.1, but does not appear to directly affect the portion of the

structure examined in the hidden individual analysis provided in the next section.

6.4.3 Detecting Unrevealed Individuals

Upon examination of the FCI output with α = 0.05 for the illustrative example,

there are indications of latent variables, i.e. hidden individuals. For example, there

is a bi-directed arc between Senators Reid and Cardin, and if the circle endpoint

between Senators Harkin and Cardin represents an arrowhead, then another bi-

directed arc exists. Consequently, it is possible a hidden individual could influence

both Senators Reid and Cardin, while a different hidden individual could influence

Senators Harkin and Cardin. Figure 12 depicts the SIN structure corresponding

to these situations (note: graphical representation of latent and observed variable

111



derived from Spirtes et al., 2000). Such a causal structure is an elaboration of the

causal structure on the right in Figure 11, and equivalent to the causal structure on

the left in Figure 11.

Reid

Biden

Cardin

Harkin

Brown

Hidden 

Individual A

Hidden 

Individual B

Figure 12 SIN with Hidden Individuals

Detecting an unrevealed individual was further examined using the approach

where a node and its associated event data are removed from the sample, and sub-

sequent exploratory analysis is performed. From the FCI output with α = 0.1, the

possibility exists, based on edge orientation, that the true SIN structure is one in

which Senator Reid directly influences both Senators Biden and Cardin (cf. Figure

9). If the node and associated data for Senator Reid are removed, and subsequent

causal exploratory analysis is performed, then it is reasonable to expect a hidden

variable signature between Senators Biden and Cardin. Figures 13 and 14 provide

the FCI output (with α = 0.05 and α = 0.1, respectively) for this case. The α = 0.05

output with four Senators has an identical structure (less edge orientation) to what

the original five Senator structure would be without the Senator Reid node and edges.

The α = 0.1 output contains an edge, with endpoint circles, between Senators Biden

and Cardin. If the edge endpoints are replaced by arrowheads, the result is a dou-

ble headed arrow. Based on the methodological assumptions, this reveals a hidden

individual, possibly Senator Reid, who was not in the analyzed data. Additionally,

the remainder of the SIN structure is nearly identical to the original.

The results from this section demonstrated the presented method’s process for

revealing a hidden individual; furthermore, follow-on analysis of an instance from the
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Figure 13 Causal Exploratory Results for Four Senators, α = 0.05

Figure 14 Causal Exploratory Results for Four Senators, α = 0.1

real-world data indicated the method has the potential to reveal a hidden individual

while reasonably maintaining the remainder of the SIN structure.

6.4.4 Causal Graph Reconstruction

As previously mentioned, the reconstruction method will be illustrated using

connected, labeled DAGs with two directed edges, and there are twelve such graphs

of order three (Korb & Nicholson, 2004; Robinson, 1977). The causal structure of a

graph is given as the set of causal relations between any two nodes. A causal relation

from labeled node x to labeled node y is denoted (xy), while the absence of a direct

causal relation between labeled node x and labeled node y is denoted (x, y) (Shipley,

2002; West, 2001). The latter can alternatively be addressed by denoting only those

causal relations that are present, and this notation is provided for DAGu in Figure

15 (Spirtes et al., 2000).

To illustrate the method for DAGu, consider the situation (based upon the

example of Figure 1 in Verma and Pearl (1991)) where dagt1 is bc, i.e. the nodes

b and c with a causal relation from b to c. This yields 4 possible, reconstructed

causal graphs in poss rect1 as shown in Figure 16. Consequently, part acct1 = 0.25.

If subsequent causal exploratory analysis is performed for the three nodes (i.e.
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a

b

c

=   {ab,bc}

Figure 15 Unknown Causal Graph DAGu

a, b, c) of DAGu, then pats consists of the three graphs in Figure 17. Consequently,

aug acct1 = |(poss rect1 ∩ pats)|−1 = 0.5.

DAG1 = {ab,bc} DAG2 = {bc,ca} DAG3 = {ba,bc} DAG4 = {ac,bc}

a

a

a

b

b

b

c

c c

a

c

b

Figure 16 Possible Reconstructions Given dagt1

DAG1 = {ab,bc} DAG2 = {ba,bc}

a

a b

b

c

c

DAG3 = {cb,ba}

c

b

a

Figure 17 Equivalent Causal Graphs for the Three Nodes of DAGu

If dagt2 is a, c (i.e. the nodes a and c without a direct causal relation), then

poss rect2 is composed of the two graphs shown in Figure 18 and part acct2 = 0.5.

Since a stable causal structure is assumed, pats is unchanged when causal exploratory

analysis is performed after t2 instead of t1; therefore, in this example, aug acct1 =

aug acct2 = 0.5.

The remaining causal substructure, dagt3 , is ab; therefore, poss rect3 = DAGu

and part acct3 = 1. Consequently, subsequent causal exploratory analysis is not
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DAG1 = {ab,bc} DAG2 = {ba,bc}

a

a b

b

c

c

Figure 18 Possible Reconstructions Given dagt2

necessary/applicable. Tables 44 and 45 list provseqj, j = 1, 2, . . . , 6 and associated

subgraphs, i.e. dag, for the twelve possible DAGs. The probability of choosing

each of the twelve possible DAGs as the true causal graph, i.e. DAGu, given the

provided subgraphs dag is listed. Consequently, the probability of choosing {ab, bc}
(highlit in the tables; note this column in Table 45 is a duplicate of that in Table

44) as DAGu (which it is indeed) is part acc. Additionally, those graphs which are

causally equivalent to DAGu, after the subgraph(s) have been provided, are given in

the column {poss rec∩ pats} − {DAGu}. From this column’s information, aug acc

can be derived, and is reported in the final column.

Table 44 Causal Graph Reconstruction Details for DAGu - Part A
provseq dag {ac,cb} {ab,ac} {ac,bc} {ba,ac} {bc,ca} {ab,bc}

part_acc

{poss_rec∩pats}

– {DAGu}
aug_acc

1

{bc}

{a,c}

{ab}

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.25

0.0

0.0

0.25

0.5

1.0

{ba,bc}

{ba,bc}

{}

0.5

0.5

1.0

2 {bc}

{ab}

{a,c}

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.25

0.0

0.0

0.25

1.0

1.0

{ba,bc}

{}

{}

0.5

1.0

1.0

3 {a,c}

{ab}

{bc}

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.5

1.0

{cb,ba};{ba,bc}

{}

{}

0.333

1.0

1.0

4 {a,c}

{bc}

{ab}

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.5

1.0

{cb,ba};{ba,bc}

{ba,bc}

{}

0.333

0.5

1.0

5 {ab}

{bc}

{a,c}

0.0

0.0

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

1.0

1.0

{}

{}

{}

1.0

1.0

1.0

6 {ab} 0.0 0.25 0.0 0.0 0.0 0.25 {} 1.06 {ab}

{a,c}

{bc}

0.0

0.0

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.5

1.0

{}

{}

{}

1.0

1.0

1.0
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Table 45 Causal Graph Reconstruction Details for DAGu - Part B
provseq dag {ba,bc} {ab,cb} {ca,ab} {cb,ba} {ca,cb} {ca,ba} {ab,bc}

part_acc

{poss_rec∩pats}

– {DAGu}
aug_acc

1

{bc}

{a,c}

{ab}

0.25

0.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.5

1.0

{ba,bc}

{ba,bc}

{}

0.5

0.5

1.0

2 {bc}

{ab}

{a,c}

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

1.0

1.0

{ba,bc}

{}

{}

0.5

1.0

1.0

3 {a,c}

{ab}

{bc}

0.25

0.0

0.0

0.25

0.5

0.0

0.0

0.0

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.5

1.0

{cb,ba};{ba,bc}

{}

{}

0.333

1.0

1.0

4 {a,c}

{bc}

{ab}

0.25

0.5

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.5

1.0

{cb,ba};{ba,bc}

{ba,bc}

{}

0.333

0.5

1.0

5 {ab}

{bc}

{a,c}

0.0

0.0

0.0

0.25

0.0

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

1.0

1.0

{}

{}

{}

1.0

1.0

1.0

6 {ab} 0.0 0.25 0.25 0.0 0.0 0.0 0.25 {} 1.06 {ab}

{a,c}

{bc}

0.0

0.0

0.0

0.25

0.5

0.0

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.25

0.5

1.0

{}

{}

{}

1.0

1.0

1.0

As previously discussed, one can also examine the case where exploratory anal-

ysis is performed prior to receiving any causal substructure. As previously men-

tioned, there are twelve potential causal graphs for the considered situation; there-

fore, for DAGu, part acct0 = 0.083. Performing exploratory analysis decreases the

number of possibilities to three causally equivalent graphs; therefore, aug acct0 =

0.333. If causal substructure ab is provided at t1, then the modified poss rect1 yields

an altered part acct1 = aug acct1 = 1.0, vice the original part acct1 = 0.25 as given

in Tables 44 and 45. Additionally, as in the above analysis, subsequent causal sub-

structure sequences can be coupled with the a priori exploratory analysis in order

to determine the knowledge value of each substructure with respect to determining

the true causal graph.

The results of this section show that the ability to reconstruct causal graphs

may be enhanced by applying causal exploratory analysis. This is intuitively in

keeping with the concept of incorporating prior knowledge into causal network de-

velopment, which is possible in TETRAD. The contribution of the presented method
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is the derivation of a process that formalizes the integration of graph reconstruction

with causal exploratory analysis resulting in associated accuracy metrics.

6.5 Conclusion

This chapter provided and illustrated a method to couple social influence with

causal exploratory analysis to identify social influence network structures and reveal

unknown individuals within such networks. The process for identifying a SIN and

hidden individuals therein was demonstrated using real-world data. Additionally,

a technique for assessing the analysis output against a proposed structure was pre-

sented. Given the assumptions, the method is a promising novel means to extract

insights regarding influence in a social network. Additionally, an approach for cou-

pling causal exploratory analysis and network reconstruction was introduced and

demonstrated. Results showed that the ability to reconstruct causal graphs may be

enhanced by applying causal exploratory analysis.

This chapter and the previous ones have presented methods to address the

problem of characterizing and detecting unrevealed elements in network systems.

While initial contributions have been made, further developments are possible. The

following chapter provides some plausible areas for continued research.
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7. Conclusions and Recommendations

7.1 Overview

Network systems are ubiquitous and can be very large. Additionally, char-

acterizing and detecting unrevealed elements of network systems are truly difficult

tasks; yet they are critically important in certain endeavors, e.g. counterterrorism.

This dissertation makes steps toward addressing such systems and the attendant

tasks. Techniques have been developed for application in extant problems; alterna-

tively, new challenges have been raised and addressed in this dissertation, through

a framework that is a generalization and expansion of a current problem. Addition-

ally, given the underlying similarities (if not equivalence) of network representations,

problems and problem solving techniques, the potential exists for interdisciplinary

application of this dissertation’s research (National Research Council, 2005; New-

man, 2006). Research may raise more questions and uncovers new challenges with

ideas for addressing them (C. Moorman, personal communication, October 14, 2008).

Consequently, not only are contributions addressed in this chapter, but also recom-

mendations for future research.

7.2 Contributions

The crux of this dissertation was the development and demonstration of meth-

ods to characterize and detect unrevealed elements in network systems. The associ-

ated contributions were three-fold:

1. A method to identify (and consequently characterize) and detect individuals

that bridge groups in social networks. In network terms, these individuals were

referred to as connection nodes.
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2. A method to reconstruct network structures given repeat observations of var-

ious parts of the network structure. Additionally, an approach to address the

reconstruction of causal (or influence) networks was provided.

3. A method to identify potential social influence network (SIN) structures and

hidden individuals using causality analysis.

With respect to the first contribution, the research demonstrated the feasibility

of a method developed for revealing bridge elements in social networks. The method

was tested on both empirical and generated data sets. A technique for where to place

the revealed bridges was also provided and demonstrated. Evident, from the analysis

associated with this contribution, was the fact that in order for the method to

provide reasonable results (i.e. high classification accuracy and/or low false positive

rates) there must be attributes that distinguish a bridge from a non-bridge. This

issue will be addressed in the section on future research; however, as presented the

method provides an initial capability to not only classify, but also detect key network

elements, i.e. connection nodes.

Pursuant to the first contribution, it was noted that there may exist conditions

under which observations of partial network structures can result in the revelation

of other network elements. The second contribution addressed a related problem;

specifically, the determination of a network structure from (possibly) repeated ob-

servations of a proper subset of the network structure. A new framework for re-

constructing a network from its subnetworks, a general formula for reconstruction

accuracy within the framework and a demonstration of the results of the associated

analysis were provided. Traditional reconstruction poses reconstruction in terms

of the number of subgraphs required to reconstruct the original network. This re-

search associates that number, in a time context, i.e. the duration to reconstruct,

since repeat observations are permissible. Additionally, stochasticity is addressed

via the definition of accuracy introduced in the modified framework. Both accuracy

and duration are affected by the sequence of observations, as well as, the set of
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non-isomorphic vertex deleted subgraphs. Consequently, the framework provides an

approach to assessing possible network structures. Furthermore, insight into poten-

tial mis-identification can be derived from the associated analysis. Ultimately, the

modified framework is a more general formulation for network reconstruction, and

can address an, arguably, more difficult reconstruction problem.

The final contribution provided and illustrated a method to couple social influ-

ence with causal exploratory analysis to identify SIN structures and reveal unknown

individuals within such networks. The process for identifying a SIN and hidden indi-

viduals therein was demonstrated using real-world data. Given the assumptions, the

method showed promise as means to gain insights regarding both structure and mem-

bership of a SIN. Such knowledge is valuable when trying to understand networks

and associated various courses of actions with respect to the structure, e.g. who

is (should) fulfilling (fulfill) certain organizational roles (e.g. Allen, 1977; Conway,

1997; Lawrence & Lorsch, 1967; Schwartz & Jacobson, 1977). Additionally, a method

that formalizes the integration of graph reconstruction with causal exploratory anal-

ysis and provides associated accuracy metrics was introduced and demonstrated.

Results showed that the ability to reconstruct causal graphs may be enhanced by

applying causal exploratory analysis.

7.3 Future Research

As previously mentioned, concepts in this dissertation should be applicable to

network types other than those demonstrated. Consequently, the bridge identifi-

cation and detection method should be feasible for other than social networks (to

include those with directed edges where relevant centrality measures, such as those

in Wasserman and Faust (1994), could be employed); assuming there are distinct

connection nodes. In fact, data from a physical system network would likely contain

less variation; therefore, improved classification results are expected with such net-

works. Not only could different network types be investigated, but also additional
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network structures and node attributes. This could be accomplished by generating

networks through a design of experiment approach. Another area of research is the

method whereby revealed bridges are inserted. One possible method is to combine

the presented insertion methods with graph reconstruction concepts and social influ-

ence analysis. Such an approach may provide a more macro-level solution to address

not only connection nodes, but also other network elements pursuant to the overar-

ching goal of this dissertation. The following paragraphs provide potential contexts

and proposed approaches for follow-on analyses related to causal networks (of which

social influence networks are a proper subset) and/or graph reconstruction.

While meaningful causal analysis can be performed when the network nodes

are known, i.e. labeled, there may be circumstances where the number of nodes is

known but associated identities or labels are not, e.g. very noisy observations of ac-

tivities, individuals or objects under surveillance (analogous to link noise of Kubica

et al. (2003b)). In such situations where the objective is network reconstruction, it

is helpful to deal with networks represented graphically by a structure other than

DAGs, even though the graphical representation of causal networks are DAGs. Such

a choice is useful for making initial gains in this area, since not every DAG is re-

constructable (Stockmeyer, 1981, pp. 234-235, 237). Consequently, a reconstruction

method could employ a DAG (denoted DAGu) approximation such as an oriented

tree, which is a tree whose edges have been made directed. In such analysis, DAGu

could be denoted as OTu. The utility of this approximation is that an oriented tree

with three or more end points (nodes having degree one) can be reconstructed from

its unlabeled vertex-deleted (oriented) subtrees (Harary & Palmer, 1966, pp. 803,

809-810).

The following approach addresses the previous case involving unlabeled, causal

graphs represented by oriented trees. The associated methodology assumes a stable

causal structure exists; however, since the vertex-deleted subgraphs are unlabeled,

the observer must perform exploratory analysis for multiple subgraphs, possibly
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incurring redundancy and introducing additional uncertainty into the reconstruction

process. For example, Spirtes et al. (1990) provided analysis based upon Rogers and

Maranto (1989) that incorrectly omitted edges in the causal structure. Such an error

could be rectified, but it could also be perpetuated yielding uncertainty regarding

the true structure (Shipley, 2002, pp. 71, 278-280; Spirtes et al., 1990, pp. 185-187,

189, 191, 197; Spirtes et al., 2000, pp. 77, 82, 84, 93, 95-96).

1. Assume there exists a ground truth causal network structure, OTu, not known

to an observer; however, the number of network nodes, n, is known.

2. At time t = 0, n− 1 nodes of OTu are (probabilistically) generated.

3. Exploratory analysis is performed on the n− 1 nodes.

4. At each time step, ti, i ∈ Z+, n− 1 nodes of OTu are chosen according to some

probabilistic decision rule.

5. Exploratory analysis is performed on the n− 1 nodes.

6. Continue node generation and exploratory analysis until OTu has been recon-

structed or a desired number of time steps has been completed.

Once this process has been performed, the following questions can be ad-

dressed.

1. For different probabilistic decision rules, what is the mean number of observa-

tions (and variance) at which the entire network is reconstructed, if at all?

Harary and Palmer (1966) proved that oriented trees containing at least three

vertices of degree one can be reconstructed from the oriented vertex deleted

subtrees, i.e. not every vertex deleted subgraph is required. Their result is a

possible lower bound. Furthermore, due to issues such as causal model equiv-

alence and inherent uncertainty in the exploratory analysis process, the result

of each time step’s causal exploratory analysis may be incorrect or not entirely
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revealing (e.g. a pattern containing undirected and directed edges, or a par-

tially oriented inducing path graph) (Shipley, 2002, pp. 71, 275, 278-280, 282;

Verma & Pearl, 1991, pp. 259-260). The analysis of Spirtes et al. (1990, 2000)

based upon Rogers and Maranto (1989) serves to illustrate this point (Spirtes

et al., 1990, pp. 185-187, 189, 191, 197; Spirtes et al., 2000, pp. 6, 59, 61, 77,

82-87, 93, 95-96, 139-140).

2. What graph characteristics, processes and probabilistic mechanisms, if any,

impact the duration required to reconstruct the original network, and why

(e.g. McMullen, 2005)?

A partial answer to this question may involve properties and methods of

causal exploratory analysis. For example, sampling error during the causal

exploratory process could result in one set of n − 1 nodes not containing the

true (but unknown to the observer) edges; therefore, depending on the prob-

abilistic mechanism employed, reconstruction may require several extra time

steps (Shipley, 2002, pp. 247-248, 275, 278-279, 282). The analysis by Spirtes

et al. (1990) again provides a sample scenario that could result in additional

time steps. (Spirtes et al., 1990, pp. 184-186, 189, 191; Spirtes et al. 2000, pp.

82-83)

3. What graph characteristics and probabilistic mechanisms impact the accuracy

of reconstructing the original network, and why?

As previously discussed, the reconstructed graph may contain uncertainty due

to the exploratory process. Some of the uncertainty is also influenced by certain

features of the ground truth network, e.g. links that point to the same vertex

(Verma & Pearl, 1991, pp. 259-260, 264). The impact of these features on the

reconstruction process, e.g. the number of such links contained in the ground

truth network, could be examined. The number of observations, i.e. time

steps, can also affect the reconstruction accuracy; for which it is reasonable to
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use the number of equivalent causal models resulting from the reconstruction

process as an associated measure.

Another analytic excursion involving unlabeled graphs is the situation where

DAGu does not necessarily represent a causal network. For this network type, it

is plausible that an analyst would be interested in the overall structure without

initial concern of or access to node labels. For example, a social network analyst

may be interested in the structure of a group of individuals apart from the identity

of the individuals (Wasserman & Faust, 1994, pp. 419-420, 423; White, Boorman,

& Breiger, 1976, pp. 731, 742, 744). Again, in order to uniquely reconstruct the

network, the examined networks could be represented graphically by oriented trees

with at least three end points.

Furthermore, an approach analogous to the previous process could be employed

to address the case involving unlabeled, oriented trees representing non-causal net-

works. The key differences would be the manner in which subgraphs are provided

and the omission of causal exploratory analysis. The provision of subgraphs and as-

sociated analysis could be similar to the method presented for unlabeled, undirected

graphs. That method did not constrain the (probabilistic) mechanism in which

subgraphs were observed; however, for both unlabeled, oriented trees representing

non-causal networks and unlabeled, undirected graphs, the impact of assuming a

particular observation scheme could be analyzed.

An additional excursion for not only unlabeled, oriented trees representing

non-causal networks, but also unlabeled, undirected graphs involves uncertainty re-

garding the existence of edges. For example, if at each time step, ti, the probability

of edge detection, pd, is not one, then uncertainty regarding the true structure of the

unknown graph may result. A simplifying assumption could be implemented, e.g.

one never detects an edge that is not actually present in the unknown graph, i.e. no

false positives.
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In an attempt to broadly apply the concepts in this dissertation, research re-

garding networks that contain both directed and undirected relations would also be

merited. Such networks could be portrayed as mixed multigraphs without loops, and

vertices could be labeled or unlabeled (Gardner, Bobga, Nguyen, & Coker, 2005, p.

13; Harary, 1969, p. 10; Wasserman & Faust, 1994, pp. 73-75; West, 2001, p. xvi).

Depending on the application, the relations could be causal, non-causal or a mix of

the two. A causal interpretation would be appropriate for addressing the notions

of multiple “... influence-related activities ...” (March, 1955, p. 436) or spheres of

influence (March, 1949, p. 213). Such a representation would, according to March

(1955), be more indicative of the influence relationship between individuals than the

single relation approach. Identifying possible SIN structures and revealing hidden

individuals could potentially be accomplished by extrapolating the methods in this

research. Additionally, the aforementioned graph reconstruction excursions (e.g. re-

peat observations) for the previously mentioned graph types could be analyzed for

mixed multi-graphs; however, different techniques, e.g. reconstructability analysis,

may be required (Klir, 1985, pp. 222-223; Klir & Parviz, 1986; Zwick, 2004, p.

889). Beyond the multiple relation network is the network of networks representa-

tion. Such a structure could contain, m (possibly multiple relation) social networks

that are interconnected. While discussion, representation and research of multiple

relation networks and network of networks have occurred (e.g. Hamill, 2006, pp.

5-6; Kennedy, 2003, pp. 3-1, 3-2; National Research Council, 2005, pp. 7; Renfro,

2001, pp. 6, 108; Wasserman & Faust, 1994, pp. 73-76), there appears to be an

open area of research regarding SIN structure identification and detection of hidden

individuals.

As mentioned in Chapter 6, there appear to be inconsistencies within the FCI

algorithm for producing causal structures. This provides an area for further investi-

gation, so there is a clear understanding of limitations associated with interpreting

and applying FCI results, and to propose corrective measures.
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7.4 Conclusion

Researchers from a variety of fields have examined hidden nodes and links in

different contexts. Accordingly, they have developed viable techniques for addressing

portions of the unrevealed elements problem. Through synthesizing extant concepts

and previous contributions, this dissertation extends the body of knowledge in this

area. Networks are based on relationships, wherein lie both problems and solutions.

This dissertation offers a means to understand the former, in order to provide the

latter.
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